Cosmic Strings and Gravitational Waves from the Early Universe

Saturday Morning of Theoretical Physics, Nov 2024

Edward Hardy

Classical Fields

[Zee, Quantum Field Theory in a Nutshell]

Classical Fields

[Zee, Quantum Field Theory in a Nutshell]

[Zee, Quantum Field Theory in a Nutshell]

Consider a new scalar field

Classical limit = large occupation number

Particle in a potential

One degree of freedom

Particle in a potential

One degree of freedom

 $\rho \sim (\partial_t \phi)^2 + (\partial_i \phi)^2 + U(\phi), \qquad E = \int d^3 x \rho$

One degree of freedom at each point in space

 $\phi(\vec{x})$

Symmetry preserving potential

E.g.
$$U(\phi) = f_a^2 \phi^2 + \lambda \phi^4$$

Symmetry:

$$Z_2: \phi \to -\phi$$
$$U(-\phi) = U(\phi)$$

 $\rho \sim (\partial_t \phi)^2 + (\partial_i \phi)^2 + U(\phi),$

Symmetry preserving potential

E.g.
$$U(\phi) = f_a^2 \phi^2 + \lambda \phi^4$$

Symmetry:

$$Z_2: \phi \to -\phi$$
$$U(-\phi) = U(\phi)$$

Preserved by the vacuum

$$\phi_{\min} = 0 = -\phi_{\min}$$

$$\rho \sim (\partial_t \phi)^2 + (\partial_i \phi)^2 + U(\phi),$$

φ

Spontaneous symmetry breaking

E.g.
$$U(\phi) = -f_a^2 \phi^2 + \lambda \phi^4$$

Symmetry: $Z_2: \phi \to -\phi$ $U(-\phi) = U(\phi)$

Broken by the vacuum

$$\phi_{\min} = \pm \frac{f_a}{\sqrt{2\lambda}} \neq -\phi_{\min}$$

$$\rho \sim (\partial_t \phi)^2 + (\partial_i \phi)^2 + U(\phi),$$

Spontaneous symmetry breaking

E.g.
$$U(\phi) = -f_a^2 \phi^2 + \lambda \phi^4$$

Symmetry:

$$Z_2: \phi \to -\phi$$

 $U(-\phi) = U(\phi)$

Broken by the vacuum

$$\phi_{\min} = \pm \frac{f_a}{\sqrt{2\lambda}} \neq -\phi_{\min}$$

$$\rho \sim (\partial_t \phi)^2 + (\partial_i \phi)^2 + U(\phi),$$

Spontaneous symmetry breaking

E.g.
$$U(\phi) = -f_a^2 \phi^2 + \lambda \phi^4$$

Symmetry:

$$Z_2: \phi \to -\phi$$

 $U(-\phi) = U(\phi)$

Broken by the vacuum

$$\phi_{\min} = \pm \frac{f_a}{\sqrt{2\lambda}} \neq -\phi_{\min}$$

$$\rho \sim (\partial_t \phi)^2 + (\partial_i \phi)^2 + U(\phi),$$

Domain walls

Domain walls

Spacetime description breaks down

The early Universe

(LHC energies)

 $((eV)^{-1} \sim 10^{-7} \,\mathrm{m} \, (MeV)^{-1} \sim 10^{-13} \,\mathrm{m} \, (10^{16} \,\mathrm{GeV})^{-1} \sim 10^{-32} \,\mathrm{m}$)

The early Universe

 $U(\phi) = (|\phi|^2 - f_a^2)^2$

Strings

$U(\phi) = (|\phi|^2 - f_a^2)^2$

Strings

$U(\phi) = (|\phi|^2 - f_a^2)^2$

Strings

Cosmological evolution

$T \gtrsim f_a$ $\sim 10^{10} \,\text{GeV} \rightarrow 10^{16} \,\,\text{GeV}$ Strings form

Destroyed

Relic dark matter,

gravitational waves,

signals in the cosmic microwave background

Cosmological evolution

$T \gtrsim f_a$ $\sim 10^{10} \,\mathrm{GeV} \rightarrow 10^{16} \,\,\mathrm{GeV}$ Strings form

Destroyed

Relic dark matter,

gravitational waves,

signals in the cosmic microwave background

Dynamics:

- nonlinear

- large scale separation

Cosmological evolution

$T \gtrsim f_a$ $\sim 10^{10} \,\mathrm{GeV} \rightarrow 10^{16} \,\,\mathrm{GeV}$ Strings form

Destroyed

Relic dark matter,

gravitational waves,

signals in the cosmic microwave background

Dynamics:

- nonlinear

- analytics numerics
- large scale separation

Simulations

•	•	•	•	•	•	•	•	1	3
٠	٠	٠	٠	٠	•	•	•	•	
٠	٠	•	٠	٠	•	•	•	٠	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
	•	•		•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	:	•	•	•	:	:	•	•	•
•	•	•	•	•	•	•	•	•	•

a few lattice points per string core

• a few Hubble patches

Simulations

•	а	few
•	a	tew

Simul

Physic

•	•	•			•	•	•	1	7	
•	•	٠	٠	٠	٠	٠	•			
•	•	٠		٠	•	•	•	•	•	
•	•	٠	٠	•	•	•	•	•	•	
•	•	•	٠	•	•	•	•	•	•	
•	•	•	٠	٠	•	•	•	•	•	
•	•	•	•	٠	•	•	٠	•	•	
•	•	•	•	٠	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•		•	•	•	•	•	•	

- a few lattice points per string core
 - Hubble patches
 - Memory constraints \rightarrow max 5000³ grid points

lations
$$\frac{f_a}{H} \lesssim \frac{1000}{100} \lesssim 1000$$

ical $\frac{f_a}{H} \sim 10^{30}$

Strings form

~ one Hubble length of string per Hubble patch

Strings form

Energy emitted per Hubble time $\simeq \pi f_a^2 \times H^{-1}$ and Hubble volume

Destroyed

Dark matter

Dark matter abundance

$\rho_{\rm DM} = n_{\rm DM} m_{\rm DM}$

Dark matter abundance

Dark matter abundance

Gravitational waves

f/Hz

Gravitational waves

Gravitational waves

Work in progress

Adaptive meshing

1st order phase transitions

- Spontaneous symmetry breaking (often)
- Persist from the early universe
- Access to ultra-high energy scales $\sim 10^{16}\,{
 m GeV}$
- Also the very early Universe: $T \sim 10^8 \,\text{GeV} \implies t_{\text{universe}} \sim 10^{-22} \,\text{second}$
- Ongoing experimental and theoretical effort

Summary

"Topological defects"

- Spontaneous symmetry breaking (often)
- Persist from the early universe
- Access to ultra-high energy scales $\sim 10^{16}\,{
 m GeV}$
- Also the very early Universe: $T \sim 10^8 \,\text{GeV} \implies t_{\text{universe}} \sim 10^{-22} \,\text{second}$
- Ongoing experimental and theoretical effort

Summary

"Topological defects"

Inanks

Backup

$$U(\phi) = (|\phi|^2 - f_a^2)^2$$

 $\mathcal{H} \sim (\partial_i \phi)^2 + U(\phi)$

$$U(\phi) = (|\phi|^2 - f_a^2)^2$$

 $\mathcal{H} \sim (\partial_i \phi)^2 + U(\phi)$

$$U(\phi) = (|\phi|^2 - f_a^2)^2$$

 $\mathcal{H} \sim (\partial_i \phi)^2 + U(\phi)$

$$\frac{\partial_{\theta} \phi}{r} \Big|^{2}$$

$$\frac{\partial_{\theta} \phi}{r} \Big|^{2}$$

$$\log\left(\frac{r_{\max}}{f_{a}^{-1}}\right)$$

$$U(\phi) = (|\phi|^2 - f_a^2)^2$$

$$U(\phi) = (|\phi|^2 - f_a^2)^2$$

 $\log(t)$

Small violations of scaling

 $\log(t)$