



# POSSIBLE SOURCES FOR THE GRAVITATIONAL-WAVE BACKGROUND

#### Yonadav Barry Ginat

Leverhulme-Peierls Fellow, Theoretical Physics & New College Saturday morning of Theoretical Physics, Oxford, 28.10.23 Image credit: NASA/WMAP

Distance  $\propto a(t)$ 



#### GW ENERGY DENSITY

- In this talk: we measure speeds in units of the speed of light, c = 1.
- A gravitational-wave carries energy. The energy density is

$$\rho_{gw} = \frac{1}{32\pi G} \left\langle \dot{h}_{ij} \dot{h}^{ij} \right\rangle$$

Measure in units of the critical density, and resolve freugencies:

$$\Omega_{gw}(f) = \frac{8\pi G}{3H_0^2} \frac{d\rho_{gw}}{d\ln f} = \frac{2\pi^2 f^3 S_h(f)}{3H_0^2} \equiv \frac{2\pi^2}{3H_0^2} f^2 h_c^2(f)$$





Copyright: LIGO & Caltech <u>https://www.ligo.caltech.edu</u>

#### © NASA/JPL-Caltech/NASAEA/ESA/CXC/STScl/GSFCSVS/ S.Barke (CC BY 4.0)

https://www.elisascience.org/multimedia/im age/lisa-astro2020



© SKA Organistion (attribution CC BY 4.0)

Oxford is heavily involved in the design an development of SKA, see:

https://www.physic s.ox.ac.uk/researc h/group/squarekilometre-arrayska



## HIGH FREQUENCIES – COMPACT BINARY IN-SPIRALS

- Gravitational waves from all over the universe constantly bathe our detectors, forming a background.
- Strongest signals are resolved individual events.
- The rest form an essentially stochastic background.
- Think of noise in restaurant.

#### GRAVITATIONAL WAVES ADD LIKE A RANDOM WALK

• A wave is  $z = he^{i\phi}$ .



• Total strain from N(t) sources is position of random walker after N(t) steps.

#### TOY MODEL FOR SOURCES

$$h(t) = h_{+}F_{+} + h_{\times}F_{\times} = b\frac{d}{r}\cos(\omega t + \varphi)$$

- Source at distance r with constant frequency  $\omega$  and amplitude bd.
- Assume difference sources are i.i.d.
- Homogeneous & isotropic distribution.



#### FLUCTUATION PROBABILITY DISTRIBUTION

- What is the probability  $P(\sum_k h_k = h)$ ?
- At  $h \rightarrow 0$  we expect P to go to some constant:
  - Low strain likely due to destructive interference of many sources
  - P(h) = P(-h) as toy model is symmetric

- = Can achieve large h if either
  - Lots of sources interfere constructively (exponentially low probability)
  - One source is strong. Probability of this is  $P(h)dh = P\left(r = \frac{bd}{h}\right)dr \propto \left(\frac{bd}{h}\right)^2 dr$

• So 
$$P(h) \propto h^{-2} \frac{dr}{dh} \propto h^{-4}$$



#### PROBABILITY FOR STRAIN AT GIVEN FREQUENCY



From: Ginat et al. (2023)

 $\Omega_{gw}(f) \equiv \frac{2\pi^2}{3H_0^2} f^2 h_c^2(f)$ 



#### LISA – WHITE DWARF BINARIES

Same type of system as black holes/ neutron stars, but:

- Frequencies are much lower longer periods ~ hours.
- Most sources contributing to SGWB are from the Milky Way.
- NOT homogeneous or isotropic (they follow the Galactic density profile).
- Less sources are active at given moment in time, i.e. emit at LISA's frequency range during an observation window of length T.

## GRAVITATIONAL WAVES FROM THE EARLY UNIVERSE

Beyond the standard model physics, e.g.:

- Ist order phase-transitions in the early universe
- https://www.ptplot.org/ptplot/
- Cosmic string collisions
- GWs emitted during inflation

All rise to a peak and then decay.



Image credit: NASA/WMAP

Distance  $\propto a(t)$ 



#### GW EMISSION DURING RADIATION DOMINATION

- Metric of expanding universe:  $ds^2 = -c^2 dt^2 + a(t)^2 dx^2$
- Define conformal time  $ad\eta = dt$ , so that the metric is  $ds^2 = a^2(-d\eta^2 + dx^2)$
- Einstein field equations give  $(h \equiv a\chi)$ , for source  $\sigma$

$$\chi^{\prime\prime} + k^2 \chi = 16\pi G a^3 \sigma$$

Solved by

$$\chi(\eta_f, \mathbf{k}) = \frac{16\pi G}{k} \int_{\eta_{in}}^{\eta_f} d\eta \ a^3(\eta) \sigma(\eta, \mathbf{k}) \cos\left(k(\eta_f - \eta)\right)$$

## CAUSAL SOURCES – LOW FREQUENCIES

- For GW the dispersion relation is simple:  $k = \frac{2\pi f}{c}$ .
- For  $k L_{source} \ll 1$ , we will show  $\Omega_{gw}(f) \sim f^3$ .
- Causal sources separated by  $\lambda \gg L_{source}$  cannot be correlated.
- At scales much longer than the typical source size, emission must be uncorrelated, so  $\langle \sigma^2(k) \rangle = const$ .
- Why?

#### SOURCE CORRELATION FUNCTION

At scales much longer than the typical source size, emission must be uncorrelated, so  $\langle \sigma^2(k) \rangle = const$ 

![](_page_19_Figure_2.jpeg)

## CAUSAL SOURCES – LOW FREQUENCIES

• From solution 
$$\langle h^2(k,\eta) \rangle \propto \langle \sigma^2(k) \rangle k^{-2}$$
. So  
 $\langle h^2(\mathbf{x},\eta) \rangle \propto k^3 \langle \sigma^2(k) \rangle k^{-2}$   
 $\Omega_{gw}(f) \propto f^2 \langle h^2(\mathbf{x},\eta) \rangle$ 

• So with  $k \propto f$ , we get

 $\Omega_{gw} \propto f^3$ 

#### CAUSAL SOURCES – HIGH FREQUENCIES

- At large  $kL_{source} \gg 1$ , we must have  $\langle \sigma^2(k) \rangle$  decaying with k, hence  $\Omega_{gw}(f)$  decays with f.
- So the general shape rise as f<sup>3</sup> up to a peak f<sub>0</sub> and then decays.
- *f*<sub>0</sub> determined by the physics of the GW emission process.

![](_page_21_Figure_4.jpeg)

https://www.ptplot.org/ptplot/

![](_page_22_Figure_1.jpeg)

#### NANOGRAV: POSSIBLE DETECTION

#### THE ASTROPHYSICAL JOURNAL LETTERS, 951:L8 (24pp), 2023 July 1 Agazie et al. (c) (a) 0.8 log10(Excess timing delay [s]) Hellings-Downs spectrum Power-law posterior 6 0.6 Median power-law amplitude; $\gamma = 13/3$ 0.4 $\Gamma(\xi_{ab})$ 0.2 0.0 æ -0.2 $\gamma = 13/3$ -0.4 30 60 90 120 150 180 0 -8.25-8.75-8.50-8.00-7.75Separation Angle Between Pulsars, $\xi_{ab}$ [degrees] log<sub>10</sub>(Frequency [Hz])

#### PULSAR TIMING ARRAYS – SMBH BINARIES?

Same as stellar-mass binaries, but

- Frequencies are much lower
- Individual mergers resolved by LISA (period ~ days-hours)
- Background stems from mergers of galaxies (period ~ decades)

# $M_{BH}$ - $M_{gal}$ ("MAGORRIAN") RELATION

![](_page_25_Figure_1.jpeg)

From: Magorrian et al. (1998)

#### HALO MASS FUNCTION

 $\frac{dn}{dM} = f(\sigma) \frac{\bar{\rho}_m}{M} \frac{d \ln \sigma^{-1}}{dM}$ 

Press & Schechter (1974), Tinker et al. (2008)

![](_page_26_Figure_3.jpeg)

#### GALAXIES MERGE HIERARCHICALLY

![](_page_27_Figure_1.jpeg)

## COMBINING TO GET RATE

Rate

$$\Phi = \frac{dn_{gal}}{dM_1} \frac{dn_{merg}}{dt} \frac{dn_{gal}}{dM_2}$$

• 
$$\frac{dn_{merg}}{dt}$$
 = rate of galaxy mergers  
 $\Omega_{gw}(f) \propto \int dM_1 dM_2 dt \Phi \frac{dE_{gw}}{dt} \frac{dt}{df} \propto f^{\frac{2}{3}} \int dM_1 dM_2 \Phi$ 

#### NANOGRAV: BINARY SMBH BACKGROUND CONSISTENT

![](_page_29_Figure_1.jpeg)

## CONCLUSIONS AND OUTLOOK

- The stochastic gravitational-wave background can allow us to observe many physical phenomena hitherto unseen.
- Signal already observed consistent with SMBH binary GWB.
- Up-coming detectors should observe it.