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The Theory Game: From Models to Predictions

Observation

(Experimental data)

Mathematical model

New predictions

Simplest predictions given by solvable limits

Harder predictions involve: - Brute-force simulations

- Approximation schemes

- Phenomenological approaches (i.e. higher-level theory)



Predicting Classical Mechanical Motion

m·· ⃗r = − GMm
⃗r

| ⃗r |3 Exact solution: Kepler laws

Newton’s equation for Planet-Sun:

Numerical simulation:   System of    2nd-order differential equations 3N
Δ ⃗ri = ⃗vi Δt

Δ ⃗vi =
1
mi

⃗F i( ⃗r1, …, ⃗rN) Δt
i = 1,2,…, N

Many-body problem: 

mi
··⃗ri = − G

N

∑
j(≠i)

mimj
⃗ri − ⃗rj

| ⃗ri − ⃗rj |
3

Famously non-solvable for N ≥ 3i = 1,…, N



Predicting Classical Mechanical Motion

m·· ⃗r = − GMm
⃗r

| ⃗r |3 Exact solution: Kepler laws

Newton’s equation for Planet-Sun:

Very large systems (gases, plasma, galaxies)      Boltzmann equation, Hydrodynamics, …→

Numerical simulation:   System of    2nd-order differential equations 3N
Δ ⃗ri = ⃗vi Δt

Δ ⃗vi =
1
mi

⃗F i( ⃗r1, …, ⃗rN) Δt
i = 1,2,…, N

Many-body problem: 

mi
··⃗ri = − G

N

∑
j(≠i)

mimj
⃗ri − ⃗rj

| ⃗ri − ⃗rj |
3

Famously non-solvable for N ≥ 3i = 1,…, N

Brute-force simulation at reach for computers



Predicting Quantum Mechanical Motion

Schrödinger’s equation for Electron-Proton:

iℏ∂tψ ( ⃗r, t) = −
ℏ2

2m
∇2ψ ( ⃗r, t) −

e2

| ⃗r |
ψ ( ⃗r, t) Exact solution: Hydrogen spectrum

Many-body problem:

iℏ∂tΨ( ⃗r1, …, ⃗rN, t) = −
ℏ2

2m

N

∑
i=1

∇2
i Ψ( ⃗r1, …, ⃗rN, t) + ∑

i<j

eiej

| ⃗ri − ⃗rj |
Ψ( ⃗r1, …, ⃗rN, t) Famously non-solvable for N ≥ 3

Approximation schemes:  Perturbation Theory, Mean-Field Theory, Density-Functional Theory …  +  Phenomenological schemes

Google search:

Brute-force simulation out of reach for any foreseeable supercomputer

⋮ ⋱

Numerical simulation:  2nd-order partial differential equation for a function of    variables 3N

from Walter Kohn’s  
Nobel lecture (1999)



Why bothering about Quantum Many-Body Physics (QMBP)?

Many important phenomena are intrinsically QUANTUM & MANY-BODY

Chemistry

- First-principle computation of molecular structure, reaction rates 
- Prediction of new molecules 
- Applications: Drug design, …



Why bothering about Quantum Many-Body Physics (QMBP)?

Many important phenomena are intrinsically QUANTUM & MANY-BODY

Chemistry

- First-principle computation of molecular structure, reaction rates 
- Prediction of new molecules 
- Applications: Drug design, …

Condensed Matter Physics

- First-principle computation of material structure, non-equilibrium response 
- Prediction of new materials and new phases of ordinary matter 
- Applications: Material functionality design, …

High-Energy Physics

- First-principle computation of hadron & nuclei structure, nuclear reaction rates  
- Prediction of behavior in extreme conditions and new phases of extreme matter 
- Applications: Beyond Standard Model phenomena (?), Nuclear reactions (?), …

Dr Brewer’s talk

…Beyond Physics

- Cryptography (e.g. Shor’s factoring algorithm) Dr Placke’s talk



Feynman’s vision of Quantum Simulation

- Solving QMBP  huge progress in several branches of Science

- However


→

- Brute-force simulation impossible  
- Controlled approximation schemes suffer  
- Phenomenology unavailable or unreliable 

…Is there a way out?

Richard Feynman’s vision (1982): 

Simulating quantum system using classical machine is hard      Use a quantum machine!→



Hardware encoding and control

How do we simulate a quantum system with a quantum machine?

Need HARDWARE : 


a reference highly controllable quantum many-body system encoding degrees of freedom of the system of interest

system⟨ψ0 |eitĤsystemÔsysteme−itĤsystem |ψ0⟩system hardware⟨ψ0 |eitĤhardwareÔhardwaree−itĤhardware |ψ0⟩hardware=

1) Mapping between states: ℋsystem [ ⟵ ]
ℋhardware⟷

2) Prepare initial state of interest: |ψ(0)⟩system |ψ(0)⟩hardware⟷

3) Design forces of interest: Ĥsystem Ĥhardware⟷

4) Measure observable of interest: Ôsystem Ôhardware⟷

System of interest

- Macromolecule 
- Material 
- Heavy nucleus

Hardware

- Controllable atoms 
- Controllable photons 
- Controllable electrons



Analog vs Digital Quantum Simulation

Quantum hardware has “native” physical Hamiltonian

David Deutsch, Artur Ekert, Andrew Steane, Vlatko Vedral,…  

- Extend reach of native Hamiltonian by additional engineering 
- Extend reach of native Hamiltonian by devising clever encoding mappings

- Use native interactions to perform elementary building-block operations on single units or pairs of units (unitary gates) 
- Choose a universal gate set, such that an arbitrary global operation on many units can be decomposed into a sequence of gates 
- Compile the target evolution as an optimal sequence of gates: SOFTWARE 

Digital quantum simulation:

Analog quantum simulation:

   Universal quantum processor⟹
Dr Placke’s talk

Quantum 
circuit:

initial state digitized evolution final measurement

time



Hardware implementation: Where do we stand?

Several competing experimental platforms in the race

Currently:  Noisy Intermediate-Scale Quantum (NISQ) devices:   Limited size and coherence time

Atomic-Molecular-Optical (AMO) systems

image: Bloch lab @ Munich

Solid-state systems

image: Google Quantum AI

…NEED YEARS AND £££

Holy Graal:  Scalable Fault-Tolerant Quantum devices:   Unlimited size and coherence time Dr Placke’s talk



Crash course on Cold-Atom Quantum Simulators

Gas of atoms (ions, molecules)

Electromagnetically trapped &

cooled to very low temperature

- magneto-optical trap

- laser cooling

- evaporative cooling

- sympathetic cooling

- …

 reduced:     N 1023 ⟶ 103 to 106

De Broglie wavelength > trap      Deep quantum regime!→

Bose-Einstein Condensate (BEC) of bosonic atoms
Cornell-Wieman 1994  (   atoms below ) 
Ketterle 1994  (  atoms) 

  Nobel prize 2001

≈ 2000 87Ru 170 nK
23Na

⟹

Controllable interactions

- 1d & 2d confinement 
- Feshbach resonance 
- Rydberg dressing 
- …

BCS-BEC crossover of fermionic atoms
Analog “Superconductivity” with neutral particles

Imaging techniques

- Time-of-flight 
- Quantum gas microscope 
- Ramsey interferometry 
- State-dependent fluorescence 
- …

Far-from-equilibrium dynamics

Single-site and real-time resolution

Measurement of quantum entanglement



Optical Lattices

Bloch lab @ Munich

Arbitrary lattice geometry

Periodic potential by 

counterpropagating lasers

(standing wave) 

Speckle pattern  Quasirandom potential→
Anderson localization Aspect lab, Nature (2008)

Shaking  Control of hopping, Artificial magnetic field→

Dynamical localization, Quantum Hall Effect, Chiral edge states

Bloch lab, PRL (2011)

Internal spin states  Synthetic dimension→

Fallani lab, Science (2015)

Ĥopt.latt. = + J∑
⟨i, j⟩

̂c†
i ̂cj + U∑

i

̂ni( ̂ni + 1)

…Understanding high-  superconductivity?Tc

Bloch, Dalibard, Zwerger RMP (2002)



|r⟩

Rydberg Atom Arrays

ĤRydberg = Ω
L

∑
i=1

̂σz
i + δ

L

∑
i=1

̂ni +
L

∑
i, j

Vi, j ̂ni ̂nj +
L

∑
i=1

Δ( − )i ̂ni
n = 0

n = 1

Alkali (hydrogen-like) atoms trapped in optical tweezers 

Two lasers drive transition to highly-excited Rydberg state

Browaeys lab @ Paris 
Lukin lab @ Harvard

R

Vi,i+1 ∼
C
R6

Strong Van der Waals interactions, controlled by distance

Rydberg blockade 
|g⟩
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Vi, j ̂ni ̂nj +
L

∑
i=1

Δ( − )i ̂ni
n = 0

n = 1

Alkali (hydrogen-like) atoms trapped in optical tweezers 

Fully reconfigurable geometry

Two lasers drive transition to highly-excited Rydberg state

Browaeys lab @ Paris 
Lukin lab @ Harvard

R

Vi,i+1 ∼
C
R6

Strong Van der Waals interactions, controlled by distance

Rydberg blockade 
|g⟩



Ion Crystals

Trapped charged atoms (ions) via electromagnetic fields

Primary role played by Oxford
David Lucas, Chris Ballance, Andrew Steane,… (Ion Trap Quantum Computing)

system are the valence electron spin states in the Beþ ion
ground state which, in the 4.46 T magnetic field, are split
by 124 GHz [16,17,36,37]. The interplay of the Coulomb
repulsion and the electromagnetic confining potentials
supports a set of normal vibrational modes of the crystal
[38], which we couple to the spin d.o.f. via a spin-
dependent optical dipole force (ODF), generated by the
interference of a pair of lasers with beat note frequency ωR
[36]. The frequency ωR is detuned from the center-of-mass
(c.m.) mode frequency, ωc:m:, by δ≡ ωR − ωc:m: (Fig. 1).
The detuning is chosen to predominantly excite the c.m.
mode which uniformly couples all the ions in the crystal
[16]. In the presence of an additional transverse field,

generated by resonant microwaves, we implement the
Dicke Hamiltonian [39–41]

ĤDicke=ℏ ¼ −
g0ffiffiffiffi
N

p ðâþ â†ÞŜz þ BðtÞŜx − δâ†â: ð1Þ

in the frame rotating with ωR. The operator âðâ†Þ is the
bosonic annihilation (creation) operator for the c.m. mode,
BðtÞ is the time-varying strength of the applied transverse
field, and g0 represents the homogeneous coupling between
each ion and the c.m. mode. Here, δ < 0. We have
introduced the collective spin operators Ŝα ¼ ð1=2Þ

P
jσ̂

α
j

where σ̂αj is the corresponding Pauli matrix for α ¼ x, y, z
which acts on the jth ion.
The Dicke Hamiltonian exhibits a quantum phase

transition at Bc ¼ g20=jδj in the thermodynamic limit,
i.e., N → ∞, [42–44], separating the normal (B > Bc)
and superradiant (B < Bc) phases. The Hamiltonian
remains unchanged under the simultaneous transformations
Ŝx → Ŝx, Ŝz → −Ŝz, Ŝy → −Ŝy, and â → −â. These are
generated by the parity operator Π̂ ¼ eiπ½â

†âþŜxþðN=2Þ&.
In the strong-field regime of the normal phase, B ≫ Bc,

the spins and phonons decouple into a product state. When
jBj > jδj the corresponding ground state, jψNor

0;N=2i, and low
lying excitations, jψNor

n¼1;2;…i, are jψNor
n;N=2i¼ jni⊗ j−N=2ix.

We use jni to denote Fock states and jMiα¼fx;y;zg to denote
the fully symmetric (S ¼ N=2) eigenstates which satisfy
ŜαjMiα ¼ MjMiα with −N=2 ≤ M ≤ N=2.
In the weak-field limit, B ≪ Bc, of the superradiant

phase, the spin and phonon d.o.f. are entangled and the
ground state becomes degenerate in the thermodynamic
limit. For a finite system, it approaches jψS

0;N=2i¼
ð1=

ffiffiffi
2

p
Þðjα0;0i⊗ jN=2iz' j−α0;0i⊗ j−N=2izÞ as B→0,

where we have introduced the displaced Fock states
jα; ni≡ D̂ðαÞjni with D̂ðαÞ ¼ eαâ

†−α(â the associated dis-
placement operator [45]. Here, the sign of the superposition
is dictated by the parity symmetry: for even N, the
ground state will be the symmetric superposition with
heiπ½â†âþŜxþðN=2Þ&i ¼ 1, while for odd N, the ground state is
the antisymmetric superposition with heiπ½â†âþŜxþðN=2Þ&i ¼
−1. In this weak-field regime, the spins exhibit ferromag-
netic order, characterized by the nonzero value of the
order parameter jŜzj, while the phonon mode acquires a
macroscopic expectation value equal to jα0j2, where
α0 ¼ g0

ffiffiffiffi
N

p
=ð2δÞ. The low-lying excitations correspond

to displaced Fock states, jψS
n>0;N=2i, if δ2 < g20 and to spin-

flips along ẑ, jψS
0;M<N=2i, if δ2 > g20.

Slow quench dynamics.—At the start of the experimental
sequence (see Fig. 1), we prepare the initial spin state
j−N=2ix with the aid of a resonant microwave pulse.
Doppler-limited cooling of the phonon d.o.f. leads to an
initial transverse phonon thermal state with mean

(a)

(b)

FIG. 1. Implementation and dynamical protocol. (a) The Dicke
model is engineered with a Penning trap ion crystal of N ∼ 70
ions by applying an optical dipole force, resonant only with the
center of mass mode (which generates spin-phonon interactions)
and resonant microwaves (which generate the transverse field).
The system is initially prepared in the normal phase where all the
spins point along the transverse field and are decoupled from the
phonons. (b) As the transverse field is slowly turned off [using
linear or exponential ramp (shown here) profiles with ramp time
τramp] the infinite system enters the superradiant phase after
crossing the quantum critical point at BðtcritÞ ¼ Bc where the gap
closes. The superradiant phase with macroscopic phonon pop-
ulation, ferromagnetically aligned spins and large spin-phonon
entanglement is described by the order parameter hðâþ â†ÞŜzi,
which is tracked closely by the rescaled spin observable
jα0jhjŜzji. (c) In the perfectly adiabatic regime, the ground state
evolves from a separable spin-paramagnetic and vacuum photon
Fock state into a macroscopic spin-phonon cat state: a super-
position of two opposite spin aligned and displaced-coherent
phonon states (with the sign of the superposition dictated by a
parity symmetry, see Supplemental Material [35]).

PHYSICAL REVIEW LETTERS 121, 040503 (2018)

040503-2

Penning trap

Colorado
…

Artur Ekert, Andrew Steane (inspiration)

Paul (rf) trap

Duke
Innsbruck
Oxford

…∼ 10μm

Largely programmable 1d spin chain

from Feng et al., Nature (2023)

Ĥspin−phonon =
1
2 ∑

i,m

ηi,mΩi ̂σ x
i ( ̂a†

meiδimt+ψi + ̂ame−iδimt−ψi)

Ĥspin−spin = ∑
i<j

Jij ̂σ x
i ̂σ x

j + ∑
i

(gi ̂σ x
i + hi ̂σz

i)
Jij

i

j j j



Simulating Quantum Field Theory with Cold Atoms

Simulating theories of fundamental interactions?

Recent progress in Electro-Dynamics

- Matter and gauge fields: interacting fermions and bosons together 
- Multiple species (charge, spin, color, flavor) 
- Hard local constraints by gauge symmetry

   Very challenging task for analog & digital quantum simulators⟹

(1+1)-dimensional Quantum Electro-Dynamics: Schwinger model

Superficial similarity with Quantum Chromo-Dynamics: 
Particle confinement, String breaking, Hadron collisions, …

time

space
Martinez et al., Nature (2016) 
Bernien et al., Nature (2017) 
Yang et al., Nature (2020)



Hamiltonian formulation of Quantum Electro-Dynamics

ĤQED = −w∑
i

̂c†
i Ûi,i+1 ̂ci+1 + ̂ciÛ†

i,i+1 ̂c†
i+1+m∑

i

( − )i ̂c†
i ̂ci +J∑

i
( ̂Ei,i+1 −

θ
2π )2

Schwinger PR (1962) 
Wilson PRD (1974) 
Kogut, Susskind PRD (1975)

vacuum state

electric field

space



Hamiltonian formulation of Quantum Electro-Dynamics
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i,i+1 ̂c†
i+1+m∑

i

( − )i ̂c†
i ̂ci +J∑

i
( ̂Ei,i+1 −

θ
2π )2

charges and electric field excitations

electric field

space

Schwinger PR (1962) 
Wilson PRD (1974) 
Kogut, Susskind PRD (1975)



Hamiltonian formulation of Quantum Electro-Dynamics
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ĤQED = −w∑
i

̂c†
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Encoding QED in Rydberg Atom Arrays

odd sites

Rydberg Atom Array 

even sites

Truncated QED
(Quantum Link Model)

Surace, AL, et al. 
Physical Review X (2020)

States:

Hamiltonian:

Observables:

w ⟷ − Ω m ⟷ − δ J(θ − π) ⟷ Δ



Collisions in Particle Accelerators Tabletop Quantum Simulators - I

Preparation of incoming meson wavepackets Detection of outgoing mesons (S-matrix) 

Dr Brewer’s talk

Outstanding goal of quantum simulation: Hadronic/Nuclear matter

High-energy collisions of heavy nuclei:  
✴ CERN Geneva (Pb-Pb) 
✴ RHIC Brookhaven National Lab (Au-Au)

Surace & AL,  
New Journal of Physics (2021)

Meson-Meson Collisions in Rydberg atom arrays:

Meson
k1

Meson
k2



Collisions in Particle Accelerators Tabletop Quantum Simulators - II

Elastic scattering(c)

(b)

Inelastic scattering to unbound 
kinks

(d) (e)Kink(a)

Ti
m

e

Evolution and detection

State preparation

Position

k −k
Position

 ≡

 ≡
Unbound two-kink state

⋯ ⋯

⋯ ⋯

⋯ ⋯
Bound two-kink state

 ≡

Ti
m

e

Ti
m

e

Ti
m

e

⋯

Collisions of kink-antikink bound states in trapped-ions quantum simulators:

(d)

(i) (j)

(a) (b) (c)

(f) (g) (h)

(e)

Numerical simulation of experimental collision:

(d)

(i) (j)

(a) (b) (c)

(f) (g) (h)

(e)(d)

(i) (j)

(a) (b) (c)

(f) (g) (h)

(e)

Kink confinement regime Kink deconfinement regime

Native Ĥspin−phonon

Bennewitz, …, AL, et al. 
in preparation (2024)



…What’s next?

THANK YOU


