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• Active matter

• How do single cells move?

• How do confluent cell layers move?

• How do cells move in vivo?



The Vicsek model



Flocking: starlings



Active turbulence: bacteria

Dense suspension of microswimmers                  



Active matter: 
 takes energy from the surroundings on a single particle level and uses it to do work. 

cellsmolecular motors
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Fig. 1. Low Reynolds number swimmers: (a) a sperm cell [13], the wave moving along the
flagellum defines a direction in time and allows motion at zero Reynolds number; (b) E. coli,
an example of a pusher, the far flow circulates outwards from the head and tail and inwards
to the sides; (c) Chlamydomonas, the ‘breast-stroke’ of the flagella leads to a contractile
(puller) far flow which circulates from the sides to the front and rear; (d) Euglena metaboly,
shape changes of the body result in propulsion; (e) Paramecium, the surface is covered by
beating cilia, these synchronise, and metachronal waves in the beating pattern move across
the surface of the organism; (f) a fabricated microswimmer, driven by a rotating magnetic
field [11].

bacteria and algae, and fabricated microswimmers, swim. For such tiny entities the
governing equations are the Stokes equations, the zero Reynolds number limit of the
Navier-Stokes equations. This implies the well-known Scallop Theorem, that swim-
ming strokes must be non-invariant under time reversal to allow a net motion, ideas
introduced in Sec. 2. Then, in Sec. 3, we define two model microswimmers and show
how to calculate their swimming speeds.

A concept that we stress in this review is that biological swimmers move au-
tonomously, free from any net external force or torque. As a result the leading order
term in the multipole (far field) expansion of the Stokes equations vanishes and mi-
croswimmers generically have dipolar far flow fields. Sec. 4 is a discussion of the
multipole expansion, and its application to microswimming, and we introduce the
stresslet and rotlet. Then, in Sec 5, we describe physical examples where the dipolar
nature of the bacterial flow field has significant consequences, velocity statistics in a
dilute bacterial suspension and tracer di↵usion in a swimmer suspension. A discussion
of open questions in Sec. 6 closes the paper. As this is a tutorial review we have aimed
to cite references which can be used as entries to the literature.
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II. METHODOLOGY
A. Immersed Boundary-Lattice Boltzmann Method.

The swimmer and cilia reside in a fluid domain. The fluid flow
is computed using the lattice Boltzmann method,7 which is an
efficient numerical solver for the Navier−Stokes equations. The
size of the fluid domain is Lx × Ly × Lz = 60 × 40 × 60 in lattice
Boltzmann units, with periodic boundary conditions in the x
and z directions and no-slip conditions applied on the
boundaries y = 0 and y = Ly. To match the scales of recently
fabricated synthetic cilia and well-studied swimming micro-
organisms, such as the alga Chlamydomonas reinhardtii, we set
the lattice Boltzmann grid spacing Δx = 2.5 μm and the time
step Δt = 1 μs. This yields a cilium length and swimmer length
of 25 μm and biologically relevant swimmer speeds on the
order of 102−103 μm/s (see below).
In our simulation, the upper and lower walls lie 100 μm

apart. We will focus on swimmer dynamics near the lower wall,
where the cilia are located. Although the wall separation is only
4 times the swimmer length, we anticipate that our conclusions
also apply in the case that the upper wall is further away or even
absent. Notably, bacterial cell scattering experiments have
suggested that a wall has negligible hydrodynamic effect until
the swimmer collides with it, aligning with the wall and
remaining in close proximity.14 Once our model swimmer
reaches the ciliated lower wall, the upper boundary is
sufficiently far away to be inconsequential.
The flow field generated by the cilia also potentially depends

on the wall separation. Performing simulations with the wall
separation doubled, however, we found that the flow profile
within the ciliary layer was qualitatively identical. The main
difference was a reduced shear rate in the fluid above the cilia
(see Figure S1). Since for our analysis we are primarily
interested in the dynamics of swimmers that reach the ciliary
layer, the location of the upper wall is not critical, provided that
it is at least a few body lengths away from the lower wall.
The LB method is coupled to the dynamics of solid objects

using the immersed boundary method as follows.10 An object in
the fluid is defined by a collection of mesh nodes. At each time
step, internal forces and torques acting on each node are
computed using a constitutive model relating the stresses to
strains within the object. These forces and torques are
transferred to the fluid in accordance with local force and
torque balance. The resulting flow field is then used to advect
the object nodes, thereby satisfying a no-slip condition on the
object. An additional feature not present in traditional IBMs is
that nodes have an associated orientation, which is updated
using the fluid vorticity field.15 This is required for the elastic
filament model of the cilia (see Supporting Information text).
Although this method of advecting immersed boundaries

helps to prevent interpenetration of bodies,15 we reinforce
excluded volume effects around objects by imposing a short-
ranged repulsive force between nodes of swimmers and those of
cilia. The form of this force corresponds to the repulsive part of
a Morse potential interaction

= − − −V r D( ) (1 e )a r rMorse ( ) 20 (1)

where the maximal interaction range is r0 = 1.5Δx. The precise
details of the repulsive interaction are not expected to
qualitatively influence the outcomes of the model.
B. Swimmer Model. The swimmer that we simulate herein

is based on a theoretical model proposed by Najafi and
Golestanian.16 The body consists of three linked spherical

beads arranged along a line. The lengths of the links between
neighboring beads oscillate as illustrated in Figure 1A. The

stroke is nonreciprocal, which is a well-known prerequisite for
generating a net displacement from a cyclic sequence of body
deformations in the zero-Reynolds-number limit.17 This model
swimmer was chosen because it is one of the simplest that
captures the fundamental characteristic of self-propulsion in a
viscous fluid and is, as for many biological swimmers, attracted
to a surface in the absence of the cilia. (However, the approach
described here is sufficiently general that we can introduce
other types of swimmers, such as a flagellated organism;18 this
will be the subject of future work.)
In our three-dimensional numerical model, each bead of the

swimmer is advected with the local flow velocity. Linear elastic
forces and torques are employed to maintain a swimmer
configuration that is close to rigid and collinear. Using one
immersed boundary node for each bead gives an effective
hydrodynamic radius R = Δx. We choose the link lengths to
oscillate between Lmin

link = 4Δx and Lmax
link = 6Δx so that the

average total swimmer length is Lswim = 10Δx = 25 μm. We
investigate swimmers with two different stroke periods, Tswim =
200Δt and 1000Δt. In both cases, we determined the net
displacement after one cycle to be about 1% of the swimmer
length. This is consistent with the analytical result for the
displacement, Δ, given by Earl et al.:19

ε εΔ = + ≈R L L L7
12

[( / ) ( / ) ] 0.009max
link 2

max
link 3 swim

where ε = (Lmax
link − Lmin

link).
Converting to physical units, the average speeds of the fast

and slow swimmers are vswim = 1250 and 250 μm/s,
respectively. By comparison, experiments have found swimming
speeds up to 240 μm/s for the 10 μm long C. reinhardtii,20

while bacteria and certain fish larvae are known to reach relative
speeds of 50 body lengths per second.21 Our simulated
swimmers are therefore representative of biological examples in
terms of speed. For a fluid with the viscosity of water, the
corresponding Reynolds numbers are Refast = 0.03 and Reslow =
0.006, indicating the dominance of viscous over inertial effects.

C. Cilium Model. Each cilium is modeled as an elastic rod
of length Lcil = 10Δx = 25 μm, discretized into N = 10
segments of equal lengths. The rod segments are characterized
by position and orientation vectors. Internal mechanics of the
rod are governed by linear elastic constitutive relations

Figure 1. Simulation setup and details of the individual components.
(A) A schematic of the swimming stroke cycle for the three-linked-
sphere swimmer. The darker sphere indicates the leading end of the
swimmer. One full cycle leads to a net displacement of about 1% of the
body length. (B) The simulation domain containing nine cilia and one
swimmer. (C) A superposition of configurations of a single cilium
showing the periodic stroke induced by the external driving force. This
stroke is animated in Movie S1.
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Living Crystals of Light-Activated
Colloidal Surfers
Jeremie Palacci,1* Stefano Sacanna,1 Asher Preska Steinberg,2 David J. Pine,1 Paul M. Chaikin1

Spontaneous formation of colonies of bacteria or flocks of birds are examples of self-organization
in active living matter. Here, we demonstrate a form of self-organization from nonequilibrium
driving forces in a suspension of synthetic photoactivated colloidal particles. They lead to
two-dimensional “living crystals,” which form, break, explode, and re-form elsewhere. The dynamic
assembly results from a competition between self-propulsion of particles and an attractive
interaction induced respectively by osmotic and phoretic effects and activated by light. We
measured a transition from normal to giant-number fluctuations. Our experiments are quantitatively
described by simple numerical simulations. We show that the existence of the living crystals is
intrinsically related to the out-of-equilibrium collisions of the self-propelled particles.

Self-organization often develops in thermal
equilibrium as a consequence of entropy
and potential interactions. However, there

are a growing number of phenomenawhere order

arises in driven, dissipative systems, far from
equilibrium. Examples include “random organi-
zation” of sheared colloidal suspensions (1) and
rods (2), nematic order from giant-number fluc-

tuations in vibrated rods (3), and phase separation
from self-induced diffusion gradients (4). Bio-
logical (5–7) and artificial active particles (8–11)
also exhibit swarm patterns that result from their
interactions (12–15).

In order to study active, driven, collective
phenomena, we created a system of self-propelled
particles where the propulsion can be turned on
and off with a blue light. This switch provides
rapid control of particle propulsion and a con-
venient means to distinguish nonequilibrium ac-
tivity from thermal Brownian motion. Further,
the particles are slightly magnetic and can be
stabilized and steered by application of a mod-
est magnetic field. Our system consists of an

1Department of Physics, New York University, 4 Washington
Place, New York, NY 10003, USA. 2Department of Physics and
Chemistry, Brandeis University, Waltham, MA 02453, USA.

*To whom correspondence should be addressed. E-mail:
jp153@nyu.edu

Fig. 1. (A) Scanning electron microscopy (SEM) of
the bimaterial colloid: a TPM polymer colloidal sphere
with protruding hematite cube (dark). (B) Living crys-
tals assembled from a homogeneous distribution (inset)
under illumination by blue light. (C) Living crystals melt
by thermal diffusion when light is extinguished: Image
shows system 10 s after blue light is turned off (inset,
after 100 s). (D to G) The false colors show the time
evolution of particles belonging to different clusters.
The clusters are not static but rearrange, exchange
particles, merge (D→F), break apart (E→F), or become
unstable and explode (blue cluster, F→G). For (B) to
(G), the scale bars indicate 10 mm. The solid area
fraction is Fs ≈ 0.14.
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Active matter: 
 takes energy from the surroundings on a single particle level and uses it to do work. 

cellsmolecular motors
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Fig. 1. Low Reynolds number swimmers: (a) a sperm cell [13], the wave moving along the
flagellum defines a direction in time and allows motion at zero Reynolds number; (b) E. coli,
an example of a pusher, the far flow circulates outwards from the head and tail and inwards
to the sides; (c) Chlamydomonas, the ‘breast-stroke’ of the flagella leads to a contractile
(puller) far flow which circulates from the sides to the front and rear; (d) Euglena metaboly,
shape changes of the body result in propulsion; (e) Paramecium, the surface is covered by
beating cilia, these synchronise, and metachronal waves in the beating pattern move across
the surface of the organism; (f) a fabricated microswimmer, driven by a rotating magnetic
field [11].

bacteria and algae, and fabricated microswimmers, swim. For such tiny entities the
governing equations are the Stokes equations, the zero Reynolds number limit of the
Navier-Stokes equations. This implies the well-known Scallop Theorem, that swim-
ming strokes must be non-invariant under time reversal to allow a net motion, ideas
introduced in Sec. 2. Then, in Sec. 3, we define two model microswimmers and show
how to calculate their swimming speeds.

A concept that we stress in this review is that biological swimmers move au-
tonomously, free from any net external force or torque. As a result the leading order
term in the multipole (far field) expansion of the Stokes equations vanishes and mi-
croswimmers generically have dipolar far flow fields. Sec. 4 is a discussion of the
multipole expansion, and its application to microswimming, and we introduce the
stresslet and rotlet. Then, in Sec 5, we describe physical examples where the dipolar
nature of the bacterial flow field has significant consequences, velocity statistics in a
dilute bacterial suspension and tracer di↵usion in a swimmer suspension. A discussion
of open questions in Sec. 6 closes the paper. As this is a tutorial review we have aimed
to cite references which can be used as entries to the literature.
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stresslet and rotlet. Then, in Sec 5, we describe physical examples where the dipolar
nature of the bacterial flow field has significant consequences, velocity statistics in a
dilute bacterial suspension and tracer di↵usion in a swimmer suspension. A discussion
of open questions in Sec. 6 closes the paper. As this is a tutorial review we have aimed
to cite references which can be used as entries to the literature.

II. METHODOLOGY
A. Immersed Boundary-Lattice Boltzmann Method.

The swimmer and cilia reside in a fluid domain. The fluid flow
is computed using the lattice Boltzmann method,7 which is an
efficient numerical solver for the Navier−Stokes equations. The
size of the fluid domain is Lx × Ly × Lz = 60 × 40 × 60 in lattice
Boltzmann units, with periodic boundary conditions in the x
and z directions and no-slip conditions applied on the
boundaries y = 0 and y = Ly. To match the scales of recently
fabricated synthetic cilia and well-studied swimming micro-
organisms, such as the alga Chlamydomonas reinhardtii, we set
the lattice Boltzmann grid spacing Δx = 2.5 μm and the time
step Δt = 1 μs. This yields a cilium length and swimmer length
of 25 μm and biologically relevant swimmer speeds on the
order of 102−103 μm/s (see below).
In our simulation, the upper and lower walls lie 100 μm

apart. We will focus on swimmer dynamics near the lower wall,
where the cilia are located. Although the wall separation is only
4 times the swimmer length, we anticipate that our conclusions
also apply in the case that the upper wall is further away or even
absent. Notably, bacterial cell scattering experiments have
suggested that a wall has negligible hydrodynamic effect until
the swimmer collides with it, aligning with the wall and
remaining in close proximity.14 Once our model swimmer
reaches the ciliated lower wall, the upper boundary is
sufficiently far away to be inconsequential.
The flow field generated by the cilia also potentially depends

on the wall separation. Performing simulations with the wall
separation doubled, however, we found that the flow profile
within the ciliary layer was qualitatively identical. The main
difference was a reduced shear rate in the fluid above the cilia
(see Figure S1). Since for our analysis we are primarily
interested in the dynamics of swimmers that reach the ciliary
layer, the location of the upper wall is not critical, provided that
it is at least a few body lengths away from the lower wall.
The LB method is coupled to the dynamics of solid objects

using the immersed boundary method as follows.10 An object in
the fluid is defined by a collection of mesh nodes. At each time
step, internal forces and torques acting on each node are
computed using a constitutive model relating the stresses to
strains within the object. These forces and torques are
transferred to the fluid in accordance with local force and
torque balance. The resulting flow field is then used to advect
the object nodes, thereby satisfying a no-slip condition on the
object. An additional feature not present in traditional IBMs is
that nodes have an associated orientation, which is updated
using the fluid vorticity field.15 This is required for the elastic
filament model of the cilia (see Supporting Information text).
Although this method of advecting immersed boundaries

helps to prevent interpenetration of bodies,15 we reinforce
excluded volume effects around objects by imposing a short-
ranged repulsive force between nodes of swimmers and those of
cilia. The form of this force corresponds to the repulsive part of
a Morse potential interaction

= − − −V r D( ) (1 e )a r rMorse ( ) 20 (1)

where the maximal interaction range is r0 = 1.5Δx. The precise
details of the repulsive interaction are not expected to
qualitatively influence the outcomes of the model.
B. Swimmer Model. The swimmer that we simulate herein

is based on a theoretical model proposed by Najafi and
Golestanian.16 The body consists of three linked spherical

beads arranged along a line. The lengths of the links between
neighboring beads oscillate as illustrated in Figure 1A. The

stroke is nonreciprocal, which is a well-known prerequisite for
generating a net displacement from a cyclic sequence of body
deformations in the zero-Reynolds-number limit.17 This model
swimmer was chosen because it is one of the simplest that
captures the fundamental characteristic of self-propulsion in a
viscous fluid and is, as for many biological swimmers, attracted
to a surface in the absence of the cilia. (However, the approach
described here is sufficiently general that we can introduce
other types of swimmers, such as a flagellated organism;18 this
will be the subject of future work.)
In our three-dimensional numerical model, each bead of the

swimmer is advected with the local flow velocity. Linear elastic
forces and torques are employed to maintain a swimmer
configuration that is close to rigid and collinear. Using one
immersed boundary node for each bead gives an effective
hydrodynamic radius R = Δx. We choose the link lengths to
oscillate between Lmin

link = 4Δx and Lmax
link = 6Δx so that the

average total swimmer length is Lswim = 10Δx = 25 μm. We
investigate swimmers with two different stroke periods, Tswim =
200Δt and 1000Δt. In both cases, we determined the net
displacement after one cycle to be about 1% of the swimmer
length. This is consistent with the analytical result for the
displacement, Δ, given by Earl et al.:19

ε εΔ = + ≈R L L L7
12

[( / ) ( / ) ] 0.009max
link 2

max
link 3 swim

where ε = (Lmax
link − Lmin

link).
Converting to physical units, the average speeds of the fast

and slow swimmers are vswim = 1250 and 250 μm/s,
respectively. By comparison, experiments have found swimming
speeds up to 240 μm/s for the 10 μm long C. reinhardtii,20

while bacteria and certain fish larvae are known to reach relative
speeds of 50 body lengths per second.21 Our simulated
swimmers are therefore representative of biological examples in
terms of speed. For a fluid with the viscosity of water, the
corresponding Reynolds numbers are Refast = 0.03 and Reslow =
0.006, indicating the dominance of viscous over inertial effects.

C. Cilium Model. Each cilium is modeled as an elastic rod
of length Lcil = 10Δx = 25 μm, discretized into N = 10
segments of equal lengths. The rod segments are characterized
by position and orientation vectors. Internal mechanics of the
rod are governed by linear elastic constitutive relations

Figure 1. Simulation setup and details of the individual components.
(A) A schematic of the swimming stroke cycle for the three-linked-
sphere swimmer. The darker sphere indicates the leading end of the
swimmer. One full cycle leads to a net displacement of about 1% of the
body length. (B) The simulation domain containing nine cilia and one
swimmer. (C) A superposition of configurations of a single cilium
showing the periodic stroke induced by the external driving force. This
stroke is animated in Movie S1.
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Fig. 1. Low Reynolds number swimmers: (a) a sperm cell [13], the wave moving along the
flagellum defines a direction in time and allows motion at zero Reynolds number; (b) E. coli,
an example of a pusher, the far flow circulates outwards from the head and tail and inwards
to the sides; (c) Chlamydomonas, the ‘breast-stroke’ of the flagella leads to a contractile
(puller) far flow which circulates from the sides to the front and rear; (d) Euglena metaboly,
shape changes of the body result in propulsion; (e) Paramecium, the surface is covered by
beating cilia, these synchronise, and metachronal waves in the beating pattern move across
the surface of the organism; (f) a fabricated microswimmer, driven by a rotating magnetic
field [11].
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introduced in Sec. 2. Then, in Sec. 3, we define two model microswimmers and show
how to calculate their swimming speeds.

A concept that we stress in this review is that biological swimmers move au-
tonomously, free from any net external force or torque. As a result the leading order
term in the multipole (far field) expansion of the Stokes equations vanishes and mi-
croswimmers generically have dipolar far flow fields. Sec. 4 is a discussion of the
multipole expansion, and its application to microswimming, and we introduce the
stresslet and rotlet. Then, in Sec 5, we describe physical examples where the dipolar
nature of the bacterial flow field has significant consequences, velocity statistics in a
dilute bacterial suspension and tracer di↵usion in a swimmer suspension. A discussion
of open questions in Sec. 6 closes the paper. As this is a tutorial review we have aimed
to cite references which can be used as entries to the literature.

II. METHODOLOGY
A. Immersed Boundary-Lattice Boltzmann Method.

The swimmer and cilia reside in a fluid domain. The fluid flow
is computed using the lattice Boltzmann method,7 which is an
efficient numerical solver for the Navier−Stokes equations. The
size of the fluid domain is Lx × Ly × Lz = 60 × 40 × 60 in lattice
Boltzmann units, with periodic boundary conditions in the x
and z directions and no-slip conditions applied on the
boundaries y = 0 and y = Ly. To match the scales of recently
fabricated synthetic cilia and well-studied swimming micro-
organisms, such as the alga Chlamydomonas reinhardtii, we set
the lattice Boltzmann grid spacing Δx = 2.5 μm and the time
step Δt = 1 μs. This yields a cilium length and swimmer length
of 25 μm and biologically relevant swimmer speeds on the
order of 102−103 μm/s (see below).
In our simulation, the upper and lower walls lie 100 μm

apart. We will focus on swimmer dynamics near the lower wall,
where the cilia are located. Although the wall separation is only
4 times the swimmer length, we anticipate that our conclusions
also apply in the case that the upper wall is further away or even
absent. Notably, bacterial cell scattering experiments have
suggested that a wall has negligible hydrodynamic effect until
the swimmer collides with it, aligning with the wall and
remaining in close proximity.14 Once our model swimmer
reaches the ciliated lower wall, the upper boundary is
sufficiently far away to be inconsequential.
The flow field generated by the cilia also potentially depends

on the wall separation. Performing simulations with the wall
separation doubled, however, we found that the flow profile
within the ciliary layer was qualitatively identical. The main
difference was a reduced shear rate in the fluid above the cilia
(see Figure S1). Since for our analysis we are primarily
interested in the dynamics of swimmers that reach the ciliary
layer, the location of the upper wall is not critical, provided that
it is at least a few body lengths away from the lower wall.
The LB method is coupled to the dynamics of solid objects

using the immersed boundary method as follows.10 An object in
the fluid is defined by a collection of mesh nodes. At each time
step, internal forces and torques acting on each node are
computed using a constitutive model relating the stresses to
strains within the object. These forces and torques are
transferred to the fluid in accordance with local force and
torque balance. The resulting flow field is then used to advect
the object nodes, thereby satisfying a no-slip condition on the
object. An additional feature not present in traditional IBMs is
that nodes have an associated orientation, which is updated
using the fluid vorticity field.15 This is required for the elastic
filament model of the cilia (see Supporting Information text).
Although this method of advecting immersed boundaries

helps to prevent interpenetration of bodies,15 we reinforce
excluded volume effects around objects by imposing a short-
ranged repulsive force between nodes of swimmers and those of
cilia. The form of this force corresponds to the repulsive part of
a Morse potential interaction
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where the maximal interaction range is r0 = 1.5Δx. The precise
details of the repulsive interaction are not expected to
qualitatively influence the outcomes of the model.
B. Swimmer Model. The swimmer that we simulate herein

is based on a theoretical model proposed by Najafi and
Golestanian.16 The body consists of three linked spherical

beads arranged along a line. The lengths of the links between
neighboring beads oscillate as illustrated in Figure 1A. The

stroke is nonreciprocal, which is a well-known prerequisite for
generating a net displacement from a cyclic sequence of body
deformations in the zero-Reynolds-number limit.17 This model
swimmer was chosen because it is one of the simplest that
captures the fundamental characteristic of self-propulsion in a
viscous fluid and is, as for many biological swimmers, attracted
to a surface in the absence of the cilia. (However, the approach
described here is sufficiently general that we can introduce
other types of swimmers, such as a flagellated organism;18 this
will be the subject of future work.)
In our three-dimensional numerical model, each bead of the

swimmer is advected with the local flow velocity. Linear elastic
forces and torques are employed to maintain a swimmer
configuration that is close to rigid and collinear. Using one
immersed boundary node for each bead gives an effective
hydrodynamic radius R = Δx. We choose the link lengths to
oscillate between Lmin

link = 4Δx and Lmax
link = 6Δx so that the

average total swimmer length is Lswim = 10Δx = 25 μm. We
investigate swimmers with two different stroke periods, Tswim =
200Δt and 1000Δt. In both cases, we determined the net
displacement after one cycle to be about 1% of the swimmer
length. This is consistent with the analytical result for the
displacement, Δ, given by Earl et al.:19
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Converting to physical units, the average speeds of the fast

and slow swimmers are vswim = 1250 and 250 μm/s,
respectively. By comparison, experiments have found swimming
speeds up to 240 μm/s for the 10 μm long C. reinhardtii,20

while bacteria and certain fish larvae are known to reach relative
speeds of 50 body lengths per second.21 Our simulated
swimmers are therefore representative of biological examples in
terms of speed. For a fluid with the viscosity of water, the
corresponding Reynolds numbers are Refast = 0.03 and Reslow =
0.006, indicating the dominance of viscous over inertial effects.

C. Cilium Model. Each cilium is modeled as an elastic rod
of length Lcil = 10Δx = 25 μm, discretized into N = 10
segments of equal lengths. The rod segments are characterized
by position and orientation vectors. Internal mechanics of the
rod are governed by linear elastic constitutive relations

Figure 1. Simulation setup and details of the individual components.
(A) A schematic of the swimming stroke cycle for the three-linked-
sphere swimmer. The darker sphere indicates the leading end of the
swimmer. One full cycle leads to a net displacement of about 1% of the
body length. (B) The simulation domain containing nine cilia and one
swimmer. (C) A superposition of configurations of a single cilium
showing the periodic stroke induced by the external driving force. This
stroke is animated in Movie S1.
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Figure 2. Schematic representation of the different steps of cell
migration on 2D substrates. 1. Polymerization of actin filaments at
the leading edge is translated into protrusive force. 2. Membrane
protrusion facilitates the binding of transmembrane cell surface
receptors to the substratum components. New adhesions are rapidly
linked to the network of actin filaments. 3. The combined activity of
retrograde actin movement and contractile forces produced by stress
fibers generates tension to pull the cell body forward. 4. The forces
produced by the contractile network combined with actin filament
and FA disassembly help to retract the trailing cell edge. Image
courtesy of the Mechanobiology Institute, National University of
Singapore.

rearrangement. On the other hand, the global organization of
the cytoskeleton also impacts the formation and disruption of
the adhesion sites. The integration of such coupled processes
over the entire cell (Cai and Sheetz 2009) leads to a global
response that modulates the cell shape and the direction of cell
movements (Keren et al 2008).

Efficient and fast remodeling of the cytoskeleton is
essential for the cells so that they can respond to external
solicitations such as blood shear flow or various infections.
Remodeling of the actin filaments is of particular interest
since they contribute both to the visco-elastic properties of

the cytoplasm and to the stability of the cellular adhesions.
In fact cells adhere to the ECM through adhesive patches that
are connected to the actin contractile network (see figures 1(b)
and 4(a)).

The connection between the transmembrane adhesion
proteins and the actin cytoskeleton makes the difference
between the adhesion of a dead cell, and that of a live cell
to the ECM. In contrast to dead cells, live cells continuously
remodel these integrin–ECM, ligand–receptor bonds (Tsuruta
et al 2002). Additionally, as detailed in section 3, these
micrometer-sized domains with a dense concentration of
adhesion receptors are unexpected from a thermodynamic
point of view (Lenne and Nicolas 2009). This suggests
that non-equilibrium mechanisms, such as energy-consuming
aggregation of proteins or active transport of the adhesion
proteins from the dilute to the dense phase, must be at play.
The actin cytoskeleton could be a major player in this out-
of-equilibrium process. Firstly, it can bear directional, active
transport along the filaments by means of specific molecular
motors. Secondly, the constant association of actin monomers
at the end of the filaments that connect to the adhesive
architecture is a source of energy, ATP being released during
the polymerization process (Pollard and Borisy 2003).

Some more information is required to understand why
tissue cell adhesion differs from the adhesion of a partially
wetting droplet to a surface, and how it contributes to the
cell’s ability to probe its physical environment (Bruinsma
and Sackmann 2001, Discher et al 2005). As previously
mentioned, tissue cell adhesion organizes as micrometer-
sized patches, with non-uniform distribution (figure 1(b)).
Specific interactions between the adhesion proteins in the cell
membrane and the ECM are required to observe such dot-like
organization of the adhesion regions. In vivo ECMs indeed
contain proteins such as fibronectin, laminin, elastin or various
forms of collagen, which strongly interact with transmembrane
adhesion proteins from the integrin family (Zaidel-Bar et al
2007, Parsons et al 2010). Formation of ‘key–lock’ bonds
between the extracellular and transmembrane proteins triggers
the activation of multiple signaling cascades (Alberts et al
2002). In the absence of such an engagement of the adhesion
proteins, as would occur on a non-adhesive surface or in the
case of red blood cells that do not have any of these adhesion
proteins, cell adhesion on the surface relies on the non-specific
interactions with the surface of the extracellular coat that
wraps the cell membrane. Then the cell maintains a regular,
round shape and adhesion resembles the wetting of a partially
wetting droplet (Cuvelier et al 2007). However, tissue cells
soon degrade and die in the absence of engagement of the
adhesion proteins. The linkage of specific transmembrane
proteins to proteins in the ECM is crucial for the adhesion of
tissue cells. Signaling cascades that follow their engagements
are extensively being studied, since dysfunction of one of
them usually impacts other cellular mechanisms, such as
division, differentiation or even cell survival. They result
in the aggregation of numerous proteins, which are finely
connected to the actin cytoskeleton (figure 5). At present,
this complex architecture of proteins, called adhesome (Zaidel-
Bar and Geiger 2010), is shown to share about 200 potential
interactions.
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During development, tissue morphogenesis requires precise
coordination of individual cell behaviours and reciprocal
interactions between cells and their extracellular matrix.

The Drosophila egg chamber provides a highly amenable system
to identify molecular mechanisms underlying changes in tissue
and organ shape1. Egg chambers are multicellular structures
within the fly ovary that will each give rise to a single egg. They
are composed of a germ cell cluster surrounded by an epithelial
layer of follicle cells. The basal surface of the epithelium is in
contact with a basement membrane extracellular matrix, which
encapsulates the egg chamber (Fig. 1a,b). Egg chambers are
assembled in an anterior ovarian region known as the germarium
and are then organized into a developmental array called an
ovariole (Fig. 1a). Each egg chamber progresses through 14
developmental stages before forming an egg.

Although initially spherical, egg chambers lengthen along
their anterior–posterior axes as they mature (Fig. 1a)2–4. This
morphogenesis begins at stage five and depends on a precise
organization of the basal epithelial surface, in which parallel
arrays of actin bundles within the cells and fibril-like structures in
the adjacent basement membrane align perpendicular to the
elongation axis (Fig. 1c)5,6. This circumferential arrangement of
structural molecules is thought to act as a ‘molecular corset’ that
directionally biases egg chamber growth towards the poles, as
mutations that disrupt this pattern lead to the production of
round rather than elongated eggs6–12. Elongation also depends on
an intriguing collective cellular motion, in which the entire egg
chamber rotates perpendicular to the anterior–posterior axis
within its surrounding basement membrane (Fig. 1d)10.

The discovery that egg chamber elongation depends on
rotation has led to two major challenges in understanding this
system. The first is to determine the mechanisms underlying
individual follicle cell motility. The second is to determine the
relationship between the rotational motion and the morphogen-
esis itself. There is compelling evidence that rotation builds the
polarized basement membrane associated with the molecular
corset10. However, the relationship between rotation and the
actin-based component of the corset, the basal actin bundles,
remains unknown.

The tissue-level organization of the basal actin bundles has
been reported to fluctuate during the early stages of egg chamber

development. The actin bundles first show a circumferential
arrangement within the follicle cell precursors in the germarium9.
However, this early tissue-level organization was reported to be
lost on egg chamber formation, such that the basal actin bundles
were still aligned within individual cells, but their global
orientation was perturbed. The tissue-level alignment of the
basal actin bundles was then thought to re-emerge at stage five,
concurrent with the time that rotation and basement membrane
polarization were reported to begin9,10. Recent work has shown
that when rotation ends at stage nine, the actin bundles undergo
oscillating, Myosin II-mediated contractions to produce a
circumferentially constrictive force around the egg chamber to
further elongate the tissue13.

Here we show that egg chamber rotation is driven by
lamellipodial protrusions at each follicle cell’s leading edge. We
further show that rotation begins much earlier than previously
reported, and that this motion is required for the tissue-level
alignment of the basal actin bundles. By blocking rotation at
discrete time points and employing a new quantitative method to
characterize actin organization, we find that the actin-based
component of the molecular corset is built in three steps. Global
actin bundle alignment is first established among the follicle cell
precursors in the germarium9. Contrary to previous reports,
however, the tissue-level actin pattern is maintained by egg
chamber rotation during stages one through five. Starting at stage
six, rotation becomes dispensable for tissue-level actin bundle
alignment. This change coincides with basement membrane
polarization, which suggests that interactions between the basal
actin bundles and the fibrillar matrix may stabilize the corset
pattern. This work sheds light on the cellular mechanisms that
drive egg chamber rotation and demonstrates how collective
cell migration can be harnessed to build a tissue-level actin
organization required for organ morphogenesis.

Results
Follicle cells have leading edge filopodia and lamellipodia. To
elucidate the cellular mechanisms underlying egg chamber rota-
tion, we first investigated the composition of the actin cytoske-
leton at the basal surface of the follicular epithelium. In addition
to the parallel arrays of actin bundles, previous reports have

Egg chamber rotation

Stage 1
Stage 7

Germarium

Stage 6
Stage 4

Basal
actin
ECM

Follicle cells

Apical

Basal

Molecular corset

Actin Col IV 

Stage 9

Figure 1 | Overview of key concepts in egg chamber elongation. (a) Illustration of an ovariole, a developmental array of egg chambers. Egg chambers
are spherical when they bud from the germarium and then lengthen along their anterior–posterior axes as they develop. (b) Blowup of the boxed region in a
highlighting the apical–basal axis of the follicle cell epithelium. (c) The ‘molecular corset’ consists of parallel arrays of actin bundles at the basal
epithelial surface (stage nine) and fibril-like structures in the adjacent basement membrane (stage seven). Laser-scanning confocal images. Scale bar,
10mm. (d) Transverse section through a stage seven egg chamber, as shown by the dashed line in a. The egg chamber rotates within the surrounding
basement membrane (illustration adapted from ref. 32).
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Figure 1 | RAB5A promotes coherent, ballistic motion of jammed epithelia. a, Left: snapshots of the velocity field obtained from PIV analysis of
doxycycline-treated control (Ctrl) and RAB5A-MCF-10A cells seeded at jamming density and monitored by time-lapse microscopy (Supplementary
Movie 2). The red arrow in each inset is the mean velocity v0 (average over the entire field of view). The colour map reflects the alignment with respect to
the mean velocity, quantified by the parameter a(x)= (v(x) ·v0)/(|v(x)||v0|). The local velocity is parallel (a=+1) or antiparallel (a=�1) to the mean
direction of migration. Right: root mean square velocity vr.m.s. (representative of >10 independent experiments). Vertical lines indicate the time interval
used for the analysis of motility parameters. b, Left plots: migration paths of control and RAB5A-MCF-10A cells (Supplementary Movie 6) seeded sparsely
to monitor individual cell motility and analysed using the Chemotaxis Tool ImageJ software plugin. Right plots: velocity and persistence of the locomotion
of cells. Data are the mean ± s.d. (n=40 single cells/experiment/genotype of three independent experiments); NS, not significant. c, Snapshots depicting
the angular velocity of control and RAB5A-MCF-10A cells seeded at jamming density and monitored by time-lapse microscopy (Supplementary Movie 7).
Angular velocity vectors are calculated by CIV analysis. The colour code indicates the direction of migration. Homogeneous and inhomogeneous scattered
colours indicate regions with high and low migration coherence, respectively. Scale bar, 100 µm. Representative images from n=5 time-lapse series.
d–f, PIV analysis of motion of doxycycline-treated control and RAB5A-MCF-10A cells seeded at jamming density (Supplementary Movie 2). In e, vertical
lines indicate the time interval used for the analysis of motility parameters. d, Left: velocity correlation functions CVV evaluated in the time window
comprised between 4 and 12 h during which the availability of EGF allows migration. The continuous lines are best fits of CVV with a stretched exponential
function. Right: correlation lengths Lcorr (five movies/experimental condition out of three to eight independent experiments). e, Order parameter  as a
function of time.  = 1 means a perfectly uniform velocity field.  ⇠=0 indicates randomly oriented velocities. f, Left: mean square displacements (MSD)
obtained by numerical integration of the velocity maps. Right: persistence length Lpers obtained by fitting the MSD curves with a model function
(continuous lines) describing the transition from a short-time ballistic to a long-time di�usive behaviour.

mammary epithelial MCF-10A cells (Supplementary Fig. 1a).
These cells form polarized monolayers and, upon reaching
confluence, display a typical collective locomotion mode
characterized by the emergence of large-scale, coordinated
motility streams, involving tens of cells. As cells keep on dividing,
density increases, causing a near complete kinetic arrest akin
to a jamming or rigidity transition5,16 (Supplementary Fig. 1b
and Supplementary Movie 1). Unexpectedly, under these latter
conditions, elevation of RAB5A-reawakened motility of kinetically

arrested monolayer by promoting large and heterogeneous
multicellular streams (Fig. 1a and Supplementary Movies 2 and
3). RAB5A expression had marginal e�ects on the rate of cell
division of confluent monolayers (Supplementary Fig. 1c), and
collective motility was unperturbed by inhibition of cell division
(Supplementary Fig. 1d and Supplementary Movie 4). Large-scale,
collective locomotion was also induced by expression of RAB5A
in jammed keratinocyte monolayers (Supplementary Fig. 1e
and Supplementary Movie 5) and oncogenically transformed
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Figure 1 | RAB5A promotes coherent, ballistic motion of jammed epithelia. a, Left: snapshots of the velocity field obtained from PIV analysis of
doxycycline-treated control (Ctrl) and RAB5A-MCF-10A cells seeded at jamming density and monitored by time-lapse microscopy (Supplementary
Movie 2). The red arrow in each inset is the mean velocity v0 (average over the entire field of view). The colour map reflects the alignment with respect to
the mean velocity, quantified by the parameter a(x)= (v(x) ·v0)/(|v(x)||v0|). The local velocity is parallel (a=+1) or antiparallel (a=�1) to the mean
direction of migration. Right: root mean square velocity vr.m.s. (representative of >10 independent experiments). Vertical lines indicate the time interval
used for the analysis of motility parameters. b, Left plots: migration paths of control and RAB5A-MCF-10A cells (Supplementary Movie 6) seeded sparsely
to monitor individual cell motility and analysed using the Chemotaxis Tool ImageJ software plugin. Right plots: velocity and persistence of the locomotion
of cells. Data are the mean ± s.d. (n=40 single cells/experiment/genotype of three independent experiments); NS, not significant. c, Snapshots depicting
the angular velocity of control and RAB5A-MCF-10A cells seeded at jamming density and monitored by time-lapse microscopy (Supplementary Movie 7).
Angular velocity vectors are calculated by CIV analysis. The colour code indicates the direction of migration. Homogeneous and inhomogeneous scattered
colours indicate regions with high and low migration coherence, respectively. Scale bar, 100 µm. Representative images from n=5 time-lapse series.
d–f, PIV analysis of motion of doxycycline-treated control and RAB5A-MCF-10A cells seeded at jamming density (Supplementary Movie 2). In e, vertical
lines indicate the time interval used for the analysis of motility parameters. d, Left: velocity correlation functions CVV evaluated in the time window
comprised between 4 and 12 h during which the availability of EGF allows migration. The continuous lines are best fits of CVV with a stretched exponential
function. Right: correlation lengths Lcorr (five movies/experimental condition out of three to eight independent experiments). e, Order parameter  as a
function of time.  = 1 means a perfectly uniform velocity field.  ⇠=0 indicates randomly oriented velocities. f, Left: mean square displacements (MSD)
obtained by numerical integration of the velocity maps. Right: persistence length Lpers obtained by fitting the MSD curves with a model function
(continuous lines) describing the transition from a short-time ballistic to a long-time di�usive behaviour.

mammary epithelial MCF-10A cells (Supplementary Fig. 1a).
These cells form polarized monolayers and, upon reaching
confluence, display a typical collective locomotion mode
characterized by the emergence of large-scale, coordinated
motility streams, involving tens of cells. As cells keep on dividing,
density increases, causing a near complete kinetic arrest akin
to a jamming or rigidity transition5,16 (Supplementary Fig. 1b
and Supplementary Movie 1). Unexpectedly, under these latter
conditions, elevation of RAB5A-reawakened motility of kinetically

arrested monolayer by promoting large and heterogeneous
multicellular streams (Fig. 1a and Supplementary Movies 2 and
3). RAB5A expression had marginal e�ects on the rate of cell
division of confluent monolayers (Supplementary Fig. 1c), and
collective motility was unperturbed by inhibition of cell division
(Supplementary Fig. 1d and Supplementary Movie 4). Large-scale,
collective locomotion was also induced by expression of RAB5A
in jammed keratinocyte monolayers (Supplementary Fig. 1e
and Supplementary Movie 5) and oncogenically transformed
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Jamming
Vertex model: jamming

A. Dynamical order parameter for the glass transition

Although the phase space for this model is three dimen-
sional, we now study the model at a fixed value of Dr ¼ 1.
We then search for a dynamical order parameter that

distinguishes between the glassy and fluid states as a
function of the two remaining model parameters ðv0; p0Þ.
A candidate order parameter is the self-diffusivity Ds:
Ds ¼ limt→∞hΔrðtÞ2i=ð4tÞ. For practicality, we calculate
Ds using simulation runs of 105 time steps, chosen to be
much longer than the typical caging time scale in the fluid
regime. We present the self-diffusivity in units of D0 ¼
v20=ð2DrÞ, which is the free diffusion constant of an isolated
cell. Deff ¼ Ds=D0 then serves as an accurate dynamical
order parameter that distinguishes a fluid state from a solid
(glassy) state in the space of ðv0; p0Þ, matching the regimes
identified using theMSDandFq. In Fig. 2, the fluid region is
characterized by a finite value ofDeff andDeff drops below a
noise floor of∼10−3 as the glass transition is approached. In
practice, we label materials with Deff > 10−3 as fluids
indicated by an orange dot, and those with Deff ≤ 10−3 as
solids indicated by blue squares. Importantly, we find that
the SPV model in the limit of zero cell motility shares a
rigidity transition with the vertex model [26] at p0 ≈ 3.81,
and that this rigidity transition controls a line of glass
transitions at finite cell motilities. Typical cell tracks (Fig. 2)
clearly show caging behavior in the glassy solid phase.

B. Cell shape is a structural order
parameter for the glass transition

In glassy systems it can be difficult to experimentally
distinguish between a truly dynamically arrested state and a

state with relaxation times longer than the experimental
time window. Similarly, in tissues it is experimentally
challenging to quantify a glass transition through the
measurement of a dynamical quantity such as the diffu-
sivity Ds. Identifying a static quantity that directly probes
the mechanical properties of a tissue would, therefore, be a
powerful tool for experiments. Puliafito et al. have sug-
gested that shape changes accompany dynamical arrest in
proliferating tissues [43]. Similarly, a structural signature
based on cell shapes—the shape index q ¼ hP=

ffiffiffiffi
A

p
i—was

previously shown to be an excellent order parameter for the
confluent tissue rigidity transition in the vertex model [11].
In a model where cells were not motile (v0 ¼ 0), we found
that when p0 < 3.813, q is constant ∼3.81, and when
p0 > 3.81, q grows linearly with p0. Quite surprisingly, we
found that the prediction of q ¼ 3.813 works perfectly in
identifying a jamming transition in in vitro experiments
involving primary human tissues, where cells are clearly
motile (v0 ≠ 0) [11]. At that time, we did not understand
why the v0 ¼ 0 theory worked so well for these tissues.
The prediction of a solid-liquid transition in the SPV

model we present here provides an explanation for this
observation. We find that q (which can be easily calculated
in experiments or simulations from a snapshot) can be used
as a structural order parameter for the glass transition for all
values of v0, not just at v0 ¼ 0. Specifically, the boundary
defined by q ¼ 3.813, shown by the blue dashed line in
Fig. 2(a), coincides extremely well with the glass transition
line obtained using the dynamical order parameter, shown
by the round and square data points. The insets of Fig. 2
also illustrate typical cell shapes: cells are isotropic on

(a) (b)

FIG. 2. (a) Glassy phase diagram for confluent tissues as a function of cell motility v0 and target shape index p0 at fixedDr ¼ 1. Blue
data points correspond to solidlike tissue with vanishing Deff ; orange points correspond to flowing tissues (finite Deff ). The dynamical
glass transition boundary also coincides with the locations in phase space where the structural order parameter q ¼ hP=

ffiffiffiffi
A

p
i ¼ 3.81

(dashed line). In the solid phase, q ≈ 3.81, and q > 3.81 in the fluid phase. (b) Instantaneous tissue snapshots show the difference in cell
shape across the transition. Cell tracks also show dynamical arrest due to caging in the solid phase and diffusion in the fluid phase.
Simulations videos of typical fluid and solid phases are included in Supplemental Materials [42].
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Figure 1 | Energy barriers for local cellular rearrangements. a, Illustration
of a T1 transition in a confluent tissue and the normalized distribution ρ of
normalized energy barrier heights "ε/"ε for a large range of parameters
(r=0.5, 1,2 and p0=3.2–3.7). They have a universal shape that is fitted well
by a k-gamma distribution (solid line), indicating that "ε completely
specifies the distribution and describes the mechanical response. b, "ε as
function of the target shape index p0 for various values of the inverse
perimeter modulus r.

and p0=P0/
√
A0 is the target shape index or a preferred perimeter-

to-area ratio. For simplicity, we focus on p0>0. For p0<0 there are
two regimes: a static regime with results identical to those presented
here for 0<p0<ppent, and a coarsening regime that is not consistent
with most observations of biological tissues. Geometrically,
a regular hexagon corresponds to phex0 =2

√
2 4√3≈3.72 and a

regular pentagon to ppent0 =2
√
5(5−2

√
5)1/4 ≈3.81.

In non-biological materials, bulk quantities such as shear/bulk
modulus, shear viscosity and yield stress are often used to describe
the mechanical response to external perturbations. However,
cells are self-propelled and, even in the absence of external
forces, cells in confluent tissues regularly intercalate, or exchange
neighbours26,27. In an isotropic confluent tissue monolayer where
mitosis (cell division) or apoptosis (cell death) are rare, cell
neighbour exchange must happen through intercalation processes
known asT1 transitions28,29, where an edge between two cells shrinks
to a point and a new edge arises between two neighbouring cells,
as illustrated in Fig. 1a. The mechanical response of the tissue is
governed by the rate of cell rearrangements, and, within the vertex
model, the rate of T1 rearrangements is related to the amount of
mechanical energy required to execute a T1 transition29. Therefore,
we first study how these energy barriers change with single-cell
properties encoded in the model parameters r and p0.

To explore the statistics of energy barriers, we test all possible
T1 transition paths (see Methods) in ten randomly generated
disordered samples each consisting of M = 64 cells. For each

value of p0 and r tested, we obtained the distribution of energy
barrier heights ρ("ε). The functional form of the distribution
becomes universal (Fig. 1a) when scaled by the mean energy
barrier height "ε(r ,p0). The rescaled distribution is fitted well by a
k-gamma distribution (kkxk−1 exp(−kx)/(k−1)!) with x="ε/"ε
and k=2.2±0.2. The k-gamma distribution has been observed
in many non-biological disordered systems30–32, and generically
results frommaximizing the entropy subject to constraints31,32. This
confirms that the distribution of energy barriers depends on the
single-cell properties p0 and r only through its average "ε.

Figure 1b shows the dependence of "ε on p0 for various values
of r . At p0!3.8, the energy barriers are always finite—that is, cells
must put in some amount of work to deform and rearrange. Here
the tissue behaves like a solid; it is a rigid material with a finite
yield stress. As p0 is increased, the energy barriers decrease and
become vanishingly small in the vicinity of p0 ≈ 3.8, so that cell
rearrangements cost almost no energy. This suggests that the vertex
model may undergo a critical rigidity transition near p0 ≈3.8.

To test this hypothesis, we searched for a scaling collapse
based on theories for continuous phase transitions near a critical
point, such as the Ising model for ferromagnetism. Figure 1b
demonstrates that r sets the overall scale of "ε as well as the
‘sharpness’ of the transition, whereas p0 controls the distance to the
transition. This suggests that the trio (r"ε, r ,p0 −p∗

0) is analogous
to (m,h,T −Tc) in the Ising model. Therefore, our scaling ansatz
is that the order parameter r"ε(r , p0) vanishes at the critical
point p0 = p∗

0 , with fluctuations controlled by r . In that case, near
the critical point the order parameter should obey the universal
scaling form33:

r"ε=|p0 −p∗
0|β f±

( r
|p0 −p∗

0|∆
)

(3)

Here z = r/|p0 − p∗
0|∆ is the crossover scaling variable, ∆ is the

crossover scaling critical exponent, and f−, f+ are the two branches of
the crossover scaling functions for p0<p∗

0 and p0>p∗
0 , respectively.

After re-plotting the data in Fig. 1b using equation (3),
we find an excellent scaling collapse onto two branches with
∆=4.0±0.4,β=1.0±0.2 and a precise location of the critical point
p∗
0=3.813±0.005, as shown in Fig. 2.
For the mechanically rigid branch in the limit z → 0, the

energy barrier can be rewritten in dimensional units and scales as
"E=KAA2

0"ε∝A0ξ
(
p∗
0 −p0

)β . This indicates that these barriers
are completely governed by the perimeter elasticity ξ . At the
critical point, the two branches of the scaling function merge and
f+= f−=zβ/∆. In this case the dimensional energy barrier scales as
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Figure 2 | A rigidity transition in confluent tissues. a, Critical scaling collapse of the average energy barrier height "ε, normalized by multiplying
r/|p0−p∗

0|β , as a function of z= r/|p0−p∗
0|∆ for the data shown in Fig. 1b, confirming the scaling ansatz of equation (3). b, The rigidity transition is

demonstrated in a simple phase diagram as a function of p0, snapshots are taken from a typical rigid tissue (p0=3.7) and fluid-like tissue (p0=3.96).
A rigidity transition occurs at p0=p∗

0≈3.813 for disordered metastable tissue configurations. The line corresponding to the order-to-disorder transition
reported by Staple et al.16 is shown for comparison. Below phex0 , the ground state is a hexagonal lattice, and above phex0 , the ground state is disordered.

NATURE PHYSICS | VOL 11 | DECEMBER 2015 | www.nature.com/naturephysics 1075

© 2015 Macmillan Publishers Limited. All rights reserved



Vertex model: flocking



Contact inhibition of locomotion (Abercrombie, 1953)

If two cells come into contact they tend 
to move away from each other – 
cells prefer to move into free space
colony expansion / wound healing

Polarisation tends to point away 
from the direction of greatest cell-cell
overlap

Cells within a colony are much less
likely to form lamellopodia

Strength of the polarization decreases 
with increasing cell-cell overlap

Michael Abercrombie and contact inhibition    9 

epithelial cells and fibroblasts is driven by the formation of hetero-
typic adhesions of E- and N-cadherin, where the epithelial cells 
solely express E- and the fibroblasts solely express N-cadherin 
(Omelchenko et al., 2001). 

In additional to classical cadherins, Eph receptors have also 
been implicated in driving CIL (Astin et al., 2010; Batson et al., 
2013; Batson et al., 2014; Marston et al., 2003). Eph receptors 
are a group of tyrosine receptors that bind to transmembrane 
ephrin ligands from a neighbouring cell and induce bidirectional 
signalling in both the ligand- and receptor-expressing cell (Kul-
lander and Klein, 2002). Eph-ephrin signalling can result in either 
a repulsive or attractive response (Poliakov et al., 2004). EphA 
signalling is required for CIL in prostate cancer cells (Batson et 
al., 2013; Batson et al., 2014) whereas EphB signalling supresses 
this response (Astin et al., 2010; Batson et al., 2013). However, 
EphB signalling induces a CIL response upon a collision in MTln3 
cells, a highly invasive breast adenoacarinoma cell line (Lin et al., 
2015), and fibroblasts (Marston et al., 2003). Interestingly both EphA 
and EphB signalling is required for CIL in Cajal-Retzius neurons 
(Villar-Cerviño et al., 2013). There is evidence of cadherin-Eph 
signalling crosstalk in heterotypic CIL between glial and glioblas-
toma cells (Tanaka et al., 2012). Upon a collision N-cadherin stimu-
lates a CIL response through its association with the nucleotide 
diphosphate kinase Nm23-H1 (Tanaka et al., 2012). Nm23-H1 
localises to N-cadherin where it binds Tiam1, a guanine exchange 
factor involved in the activation of Rac1, and blocks Tiam1 from 
activating Rac1 near the cell-cell contact. However, the expres-
sion of ephrin-B1 supresses CIL by blocking the association of 
Nm23-H1 with Tiam1 and thus elevates the activity of Tiam1 and 
consequently Rac1 at the cell-cell contact (Tanaka et al., 2012). 
In order for CIL to occur, a co-ordinated response is likely to be 
required between cadherin-based adhesions and Eph receptors 
such as that which occurs during embryonic boundary formation 
in Xenopus mesoderm (Fagotto et al., 2013).

A recent paper modelling CIL between cells on 1-dimensional 
lines has highlighted the importance of tightly controlled cell-
cell adhesion strength for CIL to occur (Kulawiak et al., 2016). 
Increased adhesions can lead to the formation of chains of cells 
where cells no longer separate after colliding (Desai et al., 2013; 
Kulawiak et al., 2016).

Cell-matrix adhesions
Cell-matrix adhesions are large multi-protein complexes that 

couple the extracellular matrix to the actin cytoskeleton thus 
creating traction which facilitates cell migration (Alexandrova et 
al., 2008; Gardel et al., 2010). Abercrombie speculated about the 
dynamic behaviour of cell-matrix adhesions during CIL in 1970 
(Abercrombie, 1970). However, it was not Abercrombie but Harris 
who first attempted to elucidate their behaviour during CIL (Har-
ris, 1973). Harris used a crude technique to infer the presence 
of attachment to the substrate. A capillary was inserted between 
the cell and the substrate and, with the use of micromanipulation 
and time-lapse cinematography, the regions where the cell was 
attached to the substrate were revealed (Rappaport and Rappaport, 
1968). Using this technique Harris concluded that a detachment of 
the cell-matrix adhesions in the lamellae occurs upon a collision 
resulting in the transfer of tension to the cell-cell contact and the 
subsequent cell-cell separation (Harris, 1973). However, when 
Abercrombie himself came to investigate the behaviour of the 

cell-matrix adhesions in the colliding lamellae using interference 
reflection microscopy, he observed a conflicting result (Abercrombie 
and Dunn, 1975). Interference reflection microscopy assumes that 
the regions where the cell membrane is closest to the substrate 
is where the cell-matrix adhesions are located (Curtis, 1964). 

Fig. 4. Role of cytoskeleton and cell-cell adhesions in contact inhibi-
tion of locomotion. Illustration of the stages of contact inhibition of 
locomotion. Cytoskeleton rearrangements are illustrated in the left-hand 
cell whilst the adhesions involved and how they change is illustrated in 
the right-hand cell. (A) Freely migrating cells show actin driven protrusions 
stabilised by microtubules. Cells have large cell-matrix adhesions in their 
leading edge. (B) Upon a collision cadherin-based adhesions form between 
cells. Eph receptors bind to ephrin from the colliding cell partner and pro-
trusions start to collapse. Actin flow is reduced and an actin stress fibre 
and microtubule bundles form, these are aligned between colliding cells. 
Cell-matrix adhesions begin to disassembly near to the cell-cell contact. 
(C) Eph/ephrin signalling and cadherin-based adhesions lead to Rho acti-
vation and Rac inhibition at the cell-cell contact. Protrusions towards the 
contact completely collapse. Actin based protrusions develop away from 
the contact as the cells repolarise. Cell-matrix adhesions begin to enlarge 
in these new protrusions. (D) The cells eventually separate thanks to the 
disassembly of large cell-matrix adhesions near the contact, the actin stress 
fibre and microtubule catastrophe events. Microtubules form in the new 
leading edge stabilising protrusions.
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C
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A

Fig from Int. J. Dev. Biol. 62: 5-13 (2018) 



Vertex model: active turbulence



Coherent flow in confinement
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Wound healing
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0.01% triton X- 100 (Sigma- Aldrich Co; PBST), each aggregate was 
post- fixed with ice- cold acetone at −20°C (Wako Pure Chemical 
Industries Ltd.) for 20 min. The acetone was then washed away, as 
described previously herein. The aggregates were subjected to im-
munohistological analyses using a cadherin antibody specific for 
Asterina pectinifera (Ap- cad antibody, Oda et al., 2005, diluted 400× 
with PBST). Following this, the aggregates were simultaneously in-
cubated with the secondary Cy3- conjugated goat anti- rat antibody 
(diluted 200× with PBST, AP183C, Sigma- Aldrich Co.) and phalloi-
din (diluted 100× with PBST, phalloidin- fluorescein isothiocyanate 
(FITC)- labeled, P- 5282, Sigma- Aldrich Co.; Hamanaka et al., 2010). 
The aggregates were incubated with the primary and secondary an-
tibodies for 30 min each, and then washed, as described previously 
herein.

2.2.4 | Laser confocal microscopy

Fluorescent green (CFSE and FITC) and red (CytoRed and Cy3) sig-
nals were detected using a confocal laser microscope (FluoView, 
Olympus). Each signal was generated with excitation lasers at 
487 nm (argon) and 543 nm (helium).

3  | RESULTS

3.1 | Identification of pEC and pEN regions

After uncaging the fluorescent- dextran in the central portion of the 
late- blastula, 16 h after fertilization, we detected fluorescent sig-
nals in the corresponding regions of the ectoderm during the late- 
gastrula and bipinnaria stages (Figure 1a– c). When the uncaging 
method was applied to the nearest anterior side of the region ex-
pressing the brachyury gene (Shoguchi et al., 1999), the fluorescent 
signal remained in the ectodermal region and was not found in the 
endodermal region (Figure 1d– f). Conversely, after uncaging only the 
center of the vegetal plate of the blastula (Figure 1g), fluorescent 
signals were detected in the most anterior portion of the invaginated 
endoderm during the late- gastrula stage (Figure 1h). Subsequently, 
at the bipinnaria stage, fluorescent signals were detected in the coe-
lomic pouches and mesenchyme cells (Figure 1i). These results indi-
cate that the cell fate of the ectoderm and endoderm is determined 
at or before the late- blastula stage and is preserved during subse-
quent developmental stages. The same results were obtained from 
experiments using early gastrula embryos, in which the late- blastula 
embryos were allowed to develop for 1 h (data not shown).

F I G U R E  2   Germ layer formation 
in a swirling culture of a mixture of 
pEC and pEN cells (the early phase of 
reconstruction). (a, a'): Dissociated pEN 
(green) and pEC cells (red) were mixed 
(Figure A1). Subsequently, samples were 
observed at (b, b') 1 h, (c, c') 4 h, (d, d') 
8 h, (e, e') 24 h, and (f, f') 48 h. They are 
displayed as differential interference and 
fluorescent images under confocal laser 
microscopy (the upper and lower rows). 
Notably, germ layers were formed with a 
proper configuration of pEC and pEN cells, 
suggesting the occurrence of cell sorting. 
Arrow: clump of pEN cells, arrowheads: 
pEC cells stained with green color (see 
text for details). Scale bar, 100 µm. pEN 
cells, presumptive endodermal cells; pEC 
cells, presumptive ectodermal cells
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0.01% triton X- 100 (Sigma- Aldrich Co; PBST), each aggregate was 
post- fixed with ice- cold acetone at −20°C (Wako Pure Chemical 
Industries Ltd.) for 20 min. The acetone was then washed away, as 
described previously herein. The aggregates were subjected to im-
munohistological analyses using a cadherin antibody specific for 
Asterina pectinifera (Ap- cad antibody, Oda et al., 2005, diluted 400× 
with PBST). Following this, the aggregates were simultaneously in-
cubated with the secondary Cy3- conjugated goat anti- rat antibody 
(diluted 200× with PBST, AP183C, Sigma- Aldrich Co.) and phalloi-
din (diluted 100× with PBST, phalloidin- fluorescein isothiocyanate 
(FITC)- labeled, P- 5282, Sigma- Aldrich Co.; Hamanaka et al., 2010). 
The aggregates were incubated with the primary and secondary an-
tibodies for 30 min each, and then washed, as described previously 
herein.

2.2.4 | Laser confocal microscopy

Fluorescent green (CFSE and FITC) and red (CytoRed and Cy3) sig-
nals were detected using a confocal laser microscope (FluoView, 
Olympus). Each signal was generated with excitation lasers at 
487 nm (argon) and 543 nm (helium).

3  | RESULTS

3.1 | Identification of pEC and pEN regions

After uncaging the fluorescent- dextran in the central portion of the 
late- blastula, 16 h after fertilization, we detected fluorescent sig-
nals in the corresponding regions of the ectoderm during the late- 
gastrula and bipinnaria stages (Figure 1a– c). When the uncaging 
method was applied to the nearest anterior side of the region ex-
pressing the brachyury gene (Shoguchi et al., 1999), the fluorescent 
signal remained in the ectodermal region and was not found in the 
endodermal region (Figure 1d– f). Conversely, after uncaging only the 
center of the vegetal plate of the blastula (Figure 1g), fluorescent 
signals were detected in the most anterior portion of the invaginated 
endoderm during the late- gastrula stage (Figure 1h). Subsequently, 
at the bipinnaria stage, fluorescent signals were detected in the coe-
lomic pouches and mesenchyme cells (Figure 1i). These results indi-
cate that the cell fate of the ectoderm and endoderm is determined 
at or before the late- blastula stage and is preserved during subse-
quent developmental stages. The same results were obtained from 
experiments using early gastrula embryos, in which the late- blastula 
embryos were allowed to develop for 1 h (data not shown).

F I G U R E  2   Germ layer formation 
in a swirling culture of a mixture of 
pEC and pEN cells (the early phase of 
reconstruction). (a, a'): Dissociated pEN 
(green) and pEC cells (red) were mixed 
(Figure A1). Subsequently, samples were 
observed at (b, b') 1 h, (c, c') 4 h, (d, d') 
8 h, (e, e') 24 h, and (f, f') 48 h. They are 
displayed as differential interference and 
fluorescent images under confocal laser 
microscopy (the upper and lower rows). 
Notably, germ layers were formed with a 
proper configuration of pEC and pEN cells, 
suggesting the occurrence of cell sorting. 
Arrow: clump of pEN cells, arrowheads: 
pEC cells stained with green color (see 
text for details). Scale bar, 100 µm. pEN 
cells, presumptive endodermal cells; pEC 
cells, presumptive ectodermal cells
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green: endoderm, red: ectoderm
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