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Alternatives

I Inertial confinement fusion - see next
talk
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talk

I Z-pinch

I (Rotating) magnetic mirror devices
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Defining Features of Tokamaks

I Tokamaks are azimuthally symmetric

I Driven by current through centre + poloidal magnets

I They have a torioidal current which produces poloidal magneic field
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Problems of Tokamaks

I Need to charge up capacitor for discharge → discontinuous use

I Transformer induced electric field drives toroidal current → instabilities

I Restrictions on density (empirical) → bad for fusion
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Alternatives

Introducing: The Stellarator

Take a tokamak and twist it
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What Devices Are Allowed?

I Fusion devices require temperature and density gradients

This results in “good”
and “bad” curvature
regions
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What Devices Are Allowed?

I Fusion devices require temperature and density gradients

This results in “good”
and “bad” curvature
regions

I Tokamaks deal with this by ensuring that

q =
# of toroidal turns

# of poloidal turns
> 1

I How to do this for non-axisymmetric devices require clever thinking
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Thinking Outside the Non-Axisymmetric Box

What should we be cautious about?

6 / 18



Thinking Outside the Non-Axisymmetric Box

What should we be cautious about?

I Magnetic Drifts

I Neoclassical Transport

6 / 18



Thinking Outside the Non-Axisymmetric Box

What should we be cautious about?

I Magnetic Drifts

I Neoclassical Transport

I E ×B drift

I Curvature and gradient-driven drifts
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To Symmetries and Beyond!

Require time-averaged radial magnetic drifts away from flux surface to vanish for
all particles

B0

Otherwise neoclassical transport is amplified
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To Symmetries and Beyond!

I We all know and love symmetries → leads to conserved quantities

I Quasi-symmetry; B = |B| has a continuous symmetry in certain coordinate
systems
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To Symmetries and Beyond!

I Particle orbits and neoclassical transport are the same in quaisymmetric
devices as in truly axisymmetric ones

I “Unwrap” stellarator with certain transformation and magnetic field looks the
same to particles
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To Symmetries and Beyond!
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So we have our demands...

but why stellarators??
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A Brief History of Time Stellarators

I Stellarators were first conceptualised by Lyman Spitzer in 1951 before
tokamaks (1958)

11 / 18



A Brief History of Time Stellarators

I Stellarators were first conceptualised by Lyman Spitzer in 1951 before
tokamaks (1958)

I Soviet Union introduced the world to the tokamak in 1968 and the stellarators
took a back seat
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A Thorn in the Side of Stellarators

“I try to avoid hard work. When things look complicated, that is often a
sign that there is a better way to do it.”

- Frank Wilczek (Nobel Prize winner 2004)
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A Thorn in the Side of Stellarators

“I try to avoid hard work. When things look complicated, that is often a
sign that there is a better way to do it.”

- Frank Wilczek (Nobel Prize winner 2004)

I Initially found to be neoclassically dominated - symmetries not perfect

I Soviet tokamaks were superior than stellarator performance

I Tokamaks were objectively simpler and more attractive to engineers
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Neoclassical Transport - The Rise and Fall of Stellarators?

I Numerical advancements allowed us to optimise neoclassical transport

I Neoclassically optimised stellarators have been built - W7-X in Greifswald,
Germany
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Neoclassical Transport - The Rise and Fall of Stellarators?

I Numerical advancements allowed us to optimise neoclassical transport

I Neoclassically optimised stellarators have been built - W7-X in Greifswald,
Germany

Now on a level playing field with tokamaks
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Advantages of Stellarators

I Stellarators are driven purely by
external coils - can have continuous
operation

I They do not have a toroidal current
- fewer instabilities/disruptions

I Have a higher density limit than
tokamaks

I Potential for better confinement

I Tokamaks are discontinous in use

I Tokamaks have toroidal current
leading to instabilities

I Tokamaks have density limit

I Tokamaks currently don’t have good
enough confinement for fusion
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Advantages Disadvantages of Stellarators

I Stellarators are driven purely by
external coils - can have continuous
operation

I They do not have a toroidal current
- fewer instabilities/disruptions

I Have a higher density limit than
tokamaks

I Potential for better confinement

I Stellarators have complicated
geometries, and even more
complicated coils!

I Self-generated current reduces
external current drive dependence

I Bigger gradients - potentially more
turbulent instabilities

I Not guaranteed nested flux surfaces
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Where Are We Now?

There seems to be as many disadvantages as there are advantages
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Where There Are Problems There Are Physicists

I Understanding new physics (if any) in stellarators

I Optimising magnetic field configuration

I Optimising coils for error

I Research into turbulent transport
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Where There Are Problems There Are Physicists

I Understanding new physics (if any) in stellarators

I Optimising magnetic field configuration

I Optimising coils for error

I Research into turbulent transport

Solution? Codes
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Why Stellarators Are Potential The Future of Fusion

Stellarators biggest problem may be their biggest strength
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Why Stellarators Are Potential The Future of Fusion

Stellarators biggest problem may be their biggest strength

Bigger Parameter Space =

Opportunities for Control
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Thank You!
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