The Miracle of Quantum Error Correction

Hillary 2024 Morning of Theoretical Physics

Benedikt Placke

Classical Information

The "classical" bit is the fundamental unit of information.

Classical Bit

$$
\sigma \in\{0,1\}
$$

It is either

- 0 or 1
- Yes or No
- Dead of Alive

Quantum vs. Classical Information

Classical Information

The "classical" bit is the fundamental unit of information.

Classical Bit

$$
\sigma \in\{0,1\}
$$

It is either

- 0 or 1
- Yes or No
- Dead of Alive

Quantum Information

Information needed to describe "minimal" quantum system

Qubit

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

$$
\alpha, \beta \in \mathbb{C},|\alpha|^{2}+|\beta|^{2}=1
$$

Quantum vs. Classical Information

Classical Information

The "classical" bit is the fundamental unit of information.

Classical Bit

$$
\sigma \in\{0,1\}
$$

It is either

- 0 or 1
- Yes or No
- Dead of Alive

Quantum Information

Information needed to describe "minimal" quantum system

Qubit

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

$$
\alpha, \beta \in \mathbb{C},|\alpha|^{2}+|\beta|^{2}=1
$$

Upon measuring, we learn

- 0 or 1
- Yes or No
- Dead or Alive
with probability $|\alpha|^{2}$ and $|\beta|^{2}$
OR

Quantum vs. Classical Information

Classical Information

The "classical" bit is the fundamental unit of information.

Classical Bit

$$
\sigma \in\{0,1\}
$$

It is either

- 0 or 1
- Yes or No
- Dead of Alive

Quantum Information

Information needed to describe "minimal" quantum system

Qubit

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

$$
\alpha, \beta \in \mathbb{C},|\alpha|^{2}+|\beta|^{2}=1
$$

Upon measuring, we learn

- 0 or 1
- Yes or No
- Dead or Alive
with probability $|\alpha|^{2}$ and $|\beta|^{2}$

This weirdness can be utilised!
Deutsch \& Jozsa (1992); Shor (1994);

Present-Day Quantum Computers Come in Many Forms

Google Quantum AI
Oxford: Peter Leek

AL ALICE \& BOB "- "

Present-Day Quantum Computers Come in Many Forms

Google Quantum AI
Oxford: Peter Leek

ALICE \& BOB

Trapped Ions

Oxford
Oxford: David Lucas

(QUANTinuUm

Present-Day Quantum Computers Come in Many Forms

Google Quantum AI
Oxford: Peter Leek

Trapped Ions

Oxford
Oxford: David Lucas

(QUANTINUUM

Reconfigurable Atom Arrays

\bulletALICE \& BOB

Present－Day Quantum Computers Come in Many Forms

Google Quantum AI
Oxford：Peter Leek

\star ALICE \＆BOB

Trapped Ions

Oxford
Oxford：David Lucas
NGT
$($
QUANTINUUM
－IONQ

Reconfigurable Atom Arrays

Harvard／QuEra

Computing Inc．
And many other platforms ．．．
Ψ PsiQuantum Photonic
ロ：：WコU巳 Quantum Annealers
QUANTUM
MOTION

Spin Qubits

Present-Day Quantum Computers Come in Many Forms

Quantum Computing is not the first "alternative" Idea...

ON THE POWER OF RANDOM ACCESS MACHINES

Arnold Schönhage
Mathematisches Institut der Universität Mübingen, Germany

```
Abstract. We study the power of deterministic successor RAM's with extra instructions like \(+, *, \div\) and the associated classes of problems decidable in polynomial time. Our main results are \(\operatorname{NP} \subseteq \operatorname{PTIME}\left(+,{ }^{*}, \div\right)\) and \(\operatorname{PRIME}\left(+,{ }^{*}\right) \subseteq R P\), where \(R P\) denotes the class of problems randomly decidable (by probabilistic TM's) in polynomial time.
```

Schönhagen (1979); https://doi.org/10.1007/3-540-09510-1 42

Quantum Computing is not the first "alternative" Idea

ON THE POWER OF RANDOM ACCESS MACHINES

Arnold Schönhage
Mathematisches Institut der Universität Tübingen, Germany

```
Abstract. We study the power of deterministic successor RAM's with extra instructions like \(+,{ }^{*}, \div\) and the associated classes of problems decidable in polynomial time. Our main results are \(\operatorname{NP} \subseteq \operatorname{PTIME}\left(+,{ }^{*}, \div\right)\) and \(\operatorname{PIIME}\left(+,{ }^{*}\right) \subseteq R P\), where \(R P\) denotes the class of problems randomly decidable (by probabilistic TM's) in polynomial time.
```

Schönhagen (1979); https://doi.org/10.1007/3-540-09510-1 42

Suppose we had access an
 Random Access Machine

- Memory can store floating point numbers $\vec{\sigma}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
- Can perform deterministic, arbitrarily precise arithmetic $(+, *, \div)$ on $\vec{\sigma}$

Quantum Computing is not the first "alternative" Idea

ON THE POWER OF RANDOM ACCESS MACHINES

Arnold Schönhage
Mathematisches Institut der Universität Mübingen, Germany

```
Abstract. We study the power of deterministic successor RAM's with extra instructions like \(+,{ }^{*}, \div\) and the associated classes of problems decidable in polynomial time. Our main results are \(\operatorname{NP} \subseteq \operatorname{PTIME}\left(+,{ }^{*}, \div\right)\) and \(\operatorname{PIIME}\left(+,{ }^{*}\right) \subseteq R P\), where \(R P\) denotes the class of problems randomly decidable (by probabilistic TM's) in polynomial time.
```

Schönhagen (1979); https://doi.org/10.1007/3-540-09510-1 42
\Leftrightarrow Such RAMs would be vastly more powerful even than quantum computers and could provably solve many interesting and relevant problems

Suppose we had access an
 Random Access Machine

- Memory can store floating point numbers $\vec{\sigma}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
- Can perform deterministic, arbitrarily precise arithmetic $(+, *, \div)$ on $\vec{\sigma}$

Quantum Computing is not the first "alternative" Idea

ON THE POWER OF RANDOM ACCESS MACHINES

Arnold Schönhage
Mathematisches Institut der Universität Mübingen, Germany

Abstract. We study the power of deterministic successor RAM's with extra instructions like $+,{ }^{*}, \div$ and the associated classes of problems decidable in polynomial time. Our main results are NP $\subseteq \operatorname{PTIME}\left(+,{ }^{*}, \div\right)$ and $\operatorname{PRIME}\left(+,{ }^{*}\right) \subseteq R P$, where $R P$ denotes the class of problems randomly decidable (by probabilistic TM's) in polynomial time.

Schönhagen (1979); https://doi.org/10.1007/3-540-09510-1 42
\Leftrightarrow Such RAMs would be vastly more powerful even than quantum computers and could provably solve many interesting and relevant problems
but...

Suppose we had access an Random Access Machine

- Memory can store floating point numbers $\vec{\sigma}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
- Can perform deterministic, arbitrarily precise arithmetic $(+, *, \div)$ on $\vec{\sigma}$

No known way to avoid accumulation of errors in floating point arithmetic

No known fault-tolerant implementation of RAMs

So what does work, anyway?

Classical, Discrete Error Correction is Simple!

Imagine sending a single bit through "noise"

$$
\sigma=0 \quad \text { Noise } \quad \sigma= \begin{cases}1 & \text { with prob } \cdot p \\ 0 & \text { with prob. } 1-p\end{cases}
$$

UNIVERSITY OF

So what does work, anyway?

Classical, Discrete Error Correction is Simple!

Imagine sending a single bit through "noise"

$$
\sigma=0 \quad \text { Noise } \quad \sigma= \begin{cases}1 & \text { with prob } \cdot p \\ 0 & \text { with prob. } 1-p\end{cases}
$$

We ourselves do simple error correction intuitively: the repetition code

$$
\overline{0}=\underbrace{0 \ldots 0}_{n \text { times }} \quad \overline{1}=\underbrace{1 \ldots 1}_{n \text { times }}
$$

If noise flips less than half the bits $(p \ll 1)$, we can recover the original state by majority voting.

No cloning theorem

We cannot "copy" arbitrary quantum information!

UNIVERSITY OF

OXFORD

But Quantum Error correction !?

No cloning theorem

We cannot "copy" arbitrary quantum information!

Proof. Imagine there exists an operation U
$U|\psi\rangle|e\rangle=|\psi\rangle|\psi\rangle$ for all states ψ and some auxiliary state e
Then $\langle\psi \mid \phi\rangle \underbrace{\langle e \mid e\rangle}_{=1}=\langle\psi|\langle e| \underbrace{U^{\dagger} U}_{=1}|\phi\rangle|e\rangle=\langle\psi \mid \phi\rangle^{2}$
$\Rightarrow\langle\psi \mid \phi\rangle \in\{0,1\} \quad$ So ψ and ϕ are identical or orthogonal!

UNIVERSITY OF

OXFORD

But Quantum Error correction !?

No cloning theorem

We cannot "copy" arbitrary quantum information!

Proof. Imagine there exists an operation U
$U|\psi\rangle|e\rangle=|\psi\rangle|\psi\rangle$ for all states ψ and some auxiliary state e
Then $\langle\psi \mid \phi\rangle \underbrace{\langle e \mid e\rangle}_{=1}=\langle\psi|\langle e| \underbrace{U^{\dagger} U}_{=1}|\phi\rangle|e\rangle=\langle\psi \mid \phi\rangle^{2}$
$\Rightarrow\langle\psi \mid \phi\rangle \in\{0,1\} \quad$ So ψ and ϕ are identical or orthogonal!

UNIVERSITY OF

OXFORD

But Quantum Error correction !?

No cloning theorem

We cannot "copy" arbitrary quantum information!

Proof. Imagine there exists an operation U
$U|\psi\rangle|e\rangle=|\psi\rangle|\psi\rangle$ for all states ψ and some auxiliary state e
Then $\langle\psi \mid \phi\rangle \underbrace{\langle e \mid e\rangle}_{=1}=\langle\psi|\langle e| \underbrace{U^{\dagger} U}_{=1}|\phi\rangle|e\rangle=\langle\psi \mid \phi\rangle^{2}$
$\Rightarrow\langle\psi \mid \phi\rangle \in\{0,1\} \quad$ So ψ and ϕ are identical or orthogona!!

Measurements are destructive

We cannot do "majority voting" since measurements are projective

$$
\text { measure } Z
$$

UNIVERSITY OF

But Quantum Error correction !?

No cloning theorem

We cannot "copy" arbitrary quantum information!

Proof. Imagine there exists an operation U
$U|\psi\rangle|e\rangle=|\psi\rangle|\psi\rangle$ for all states ψ and some auxiliary state e

$$
\text { Then }\langle\psi \mid \phi\rangle \underbrace{\langle e \mid e\rangle}_{=1}=\langle\psi|\langle e| \underbrace{U^{\dagger} U}_{=1}|\phi\rangle|e\rangle=\langle\psi \mid \phi\rangle^{2}
$$

$\Rightarrow\langle\psi \mid \phi\rangle \in\{0,1\} \quad$ So ψ and ϕ are identical or orthogonal!

Errors on Bloch sphere are continuous

- Errors can be arbitrarily small rotations on Bloch Sphere
- If we cannot even do floating point arithmetic correct, is there any hope of correcting those?

Measurements are destructive

We cannot do "majority voting" since measurements are projective

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \Longrightarrow \begin{cases}|0\rangle & \text { with prob. }|\alpha|^{2} \\ |1\rangle & \text { with prob. }|\beta|^{2}\end{cases}
$$

No cloning theorem

We cannot "copy" arbitrary quantum information!

Proof. Imagine there exists an operation U
$U|\psi\rangle|e\rangle=|\psi\rangle|\psi\rangle$ for all states ψ and some auxiliary state e

$$
\text { Then }\langle\psi \mid \phi\rangle \underbrace{\langle e \mid e\rangle}_{=1}=\langle\psi|\langle e| \underbrace{U^{\dagger} U}_{=1}|\phi\rangle|e\rangle=\langle\psi \mid \phi\rangle^{2}
$$

$\Rightarrow\langle\psi \mid \phi\rangle \in\{0,1\} \quad$ So ψ and ϕ are identical or orthogona!!

Errors on Bloch sphere are continuous

- Errors can be arbitrarily small rotations on Bloch Sphere
- If we cannot even do floating point arithmetic correct, is there any hope of correcting those?

Measurements are destructive

We cannot do "majority voting" since measurements are projective

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle> \begin{cases}|0\rangle & \text { with prob. }|\alpha|^{2} \\ |1\rangle & \text { with prob. }|\beta|^{2}\end{cases}
$$

Surprisingly:

Shor (1995) and Steane (1996)

Quantum Error Correction is Possible!

But we need all the weirdness (and beauty) of Quantum Mechanics to make it work

Cloning any state is not necessary!

$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

- Quantum CNOT clones states $|0\rangle$ and $|1\rangle$ (which are orthogonal)
- Produces redundancy by entanglement

Cloning any state is not necessary!

$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

- Quantum CNOT clones states $|0\rangle$ and $|1\rangle$ (which are orthogonal)
- Produces redundancy by entanglement

The quantum version of our redundant coffee/tea order:

The Quantum Repetition Code (1/2)

Cloning any state is not necessary!

$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

$\alpha|00\rangle+\beta|11\rangle$
$|0\rangle$

CNOT gate

- Quantum CNOT clones states $|0\rangle$ and $|1\rangle$ (which are orthogonal)
- Produces redundancy by entanglement

The quantum version of our redundant coffee/tea order:

What about measurements?

$$
|\bar{\psi}\rangle=\alpha|000\rangle+\beta|111\rangle
$$

measure Z_{1} "what is the value of the first bit"?

The Quantum Repetition Code (1/2)

Cloning any state is not necessary!

$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

$\alpha|00\rangle+\beta|11\rangle$
$|0\rangle$

CNOT gate

- Quantum CNOT clones states $|0\rangle$ and $|1\rangle$ (which are orthogonal)
- Produces redundancy by entanglement

The quantum version of our redundant coffee/tea order:

What about measurements?

$$
|\bar{\psi}\rangle=\alpha|000\rangle+\beta|111\rangle
$$

measure Z_{1} "what is the value of the finst bit"?

The Quantum Repetition Code (1/2)

Cloning any state is not necessary!

$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

$|0\rangle$

$\alpha|00\rangle+\beta|11\rangle$

CNOT gate

- Quantum CNOT clones states $|0\rangle$ and $|1\rangle$ (which are orthogonal)
- Produces redundancy by entanglement

The quantum version of our redundant coffee/tea order:

What about measurements?

$$
|\bar{\psi}\rangle=\alpha|000\rangle+\beta|111\rangle
$$

measure Z_{1} "what is the value of the finst bit"?
Not well defined in $|\bar{\psi}\rangle$

Instead measure parity $Z_{1} Z_{2}$: "are the first two bits equal?"

Other parity $Z_{2} Z_{3}$ also well defined!
well defined in $|\bar{\psi}\rangle$

The Quantum Repetition Code (1/2)

Cloning any state is not necessary!

$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

$|0\rangle$

$\alpha|00\rangle+\beta|11\rangle$

CNOT gate

- Quantum CNOT clones states $|0\rangle$ and $|1\rangle$ (which are orthogonal)
- Produces redundancy by entanglement

The quantum version of our redundant coffee/tea order:

What about measurements?

$$
|\bar{\psi}\rangle=\alpha|000\rangle+\beta|111\rangle
$$

measure Z_{1} "what is the value of the finst bit"?

Instead measure parity $Z_{1} Z_{2}$: "are the first two bits equal?" well defined in $|\bar{\psi}\rangle$
Other parity $Z_{2} Z_{3}$ also well defined!

Measuring either parity in $|\bar{\psi}\rangle$ will
\Rightarrow will yield $+1(=)$ with certainty
\Rightarrow will leave the state invariant
\Rightarrow can be used to diagnose errors! (next slide)

The Quantum Repetition Code (2/2)

Parity Measurements
$Z_{1} Z_{2} \quad Z_{2} Z_{3} \quad$ "are first/last two bits equal?"

UNIVERSITY OF
OXFORD

The Quantum Repetition Code (2/2)

Parity Measurements

$Z_{1} Z_{2} \quad Z_{2} Z_{3} \quad$ "are first/last two bits equal?"

Consider an example error

$$
\begin{aligned}
X|0\rangle & =|1\rangle \\
X|1\rangle & =|0\rangle
\end{aligned}
$$

"bit-flips" / Pauli-X

UNIVERSITY OF
OXFORD

The Quantum Repetition Code (2/2)

Consider an example error

$$
\begin{aligned}
X|0\rangle & =|1\rangle \\
X|1\rangle & =|0\rangle
\end{aligned}
$$

"bit-flips" / Pauli-X

The Quantum Repetition Code (2/2)

Consider an example error

$$
\begin{aligned}
X|0\rangle & =|1\rangle \\
X|1\rangle & =|0\rangle
\end{aligned}
$$

"bit-flips" / Pauli-X

So what happens to the encoded state?

	$Z_{1} Z_{2}$	$Z_{2} Z_{3}$
$X_{1}\|\bar{\psi}\rangle=\alpha\|100\rangle+\beta\|011\rangle$		

The Quantum Repetition Code (2/2)

Consider an example error

$$
\begin{aligned}
X|0\rangle & =|1\rangle \\
X|1\rangle & =|0\rangle
\end{aligned}
$$

"bit-flips" / Pauli-X

So what happens to the encoded state?

	$Z_{1} Z_{2}$	$Z_{2} Z_{3}$
$X_{1}\|\bar{\psi}\rangle=\alpha\|100\rangle+\beta\|011\rangle$	\neq	$=$

The Quantum Repetition Code (2/2)

Consider an example error

$$
\begin{aligned}
X|0\rangle & =|1\rangle \\
X|1\rangle & =|0\rangle
\end{aligned}
$$

"bit-flips" / Pauli-X

So what happens to the encoded state?

	$Z_{1} Z_{2}$	$Z_{2} Z_{3}$
$X_{1}\|\bar{\psi}\rangle=\alpha\|100\rangle+\beta\|011\rangle$	\neq	$=$
$X_{2}\|\bar{\psi}\rangle=\alpha\|010\rangle+\beta\|101\rangle$	\neq	\neq

The Quantum Repetition Code (2/2)

Consider an example error

$$
\begin{aligned}
X|0\rangle & =|1\rangle \\
X|1\rangle & =|0\rangle
\end{aligned}
$$

"bit-flips" / Pauli-X

So what happens to the encoded state?

	$Z_{1} Z_{2}$	$Z_{2} Z_{3}$
$X_{1}\|\bar{\psi}\rangle=\alpha\|100\rangle+\beta\|011\rangle$	\neq	$=$
$X_{2}\|\bar{\psi}\rangle=\alpha\|010\rangle+\beta\|101\rangle$	\neq	\neq
$X_{3}\|\bar{\psi}\rangle=\alpha\|001\rangle+\beta\|110\rangle$	$=$	\neq

The Quantum Repetition Code (2/2)

Encoded State

$\alpha|000\rangle+\beta|111\rangle$
$=|\bar{\psi}\rangle$

Parity Measurements

$Z_{1} Z_{2} \quad Z_{2} Z_{3} \quad$ "are first/last two bits equal?"

Consider an example error

$$
\begin{aligned}
X|0\rangle & =|1\rangle \\
X|1\rangle & =|0\rangle
\end{aligned}
$$

"bit-flips" / Pauli-X

So what happens to the encoded state?

	$Z_{1} Z_{2}$	$Z_{2} Z_{3}$
$X_{1}\|\bar{\psi}\rangle=\alpha\|100\rangle+\beta\|011\rangle$	\neq	$=$
$X_{2}\|\bar{\psi}\rangle=\alpha\|010\rangle+\beta\|101\rangle$	\neq	\neq
$X_{3}\|\bar{\psi}\rangle=\alpha\|001\rangle+\beta\|110\rangle$	$=$	\neq

Unique outcome of parity measurements in each case : "syndrome"

We can correct (single) bit flips without learning anything about the stored quantum information!

Let's do something more quantum

Bit flip code encoding

(Just?) Another Repetition Code

Let's do something more quantum

Bit Phase flip code encoding

"Hadamard" Gate

$H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=:|+\rangle$
$H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=:|-\rangle$

(Just?) Another Repetition Code

Let's do something more quantum

Bit Phase flip code encoding

UNIVERSITY OF

OXFORD

(Just?) Another Repetition Code

Let's do something more quantum

Bit Phase flip code encoding

Hadamard Gate implements "basis change"

$$
X_{i} \leftrightarrow Z_{i}
$$

Checks become

$$
X_{1} X_{2}, \quad X_{2} X_{3}
$$

This code corrects single phase-flips!

$$
\begin{aligned}
& Z|+\rangle=|-\rangle \\
& Z|-\rangle=|+\rangle
\end{aligned} \quad \text { "phase-flips" / Pauli-Z }
$$

remember:

$$
\begin{aligned}
Z|0\rangle & =|0\rangle \\
Z|1\rangle & =-|1\rangle
\end{aligned}
$$

The Shor Code

Outer code:
Phase-flip code

We now concatenate the bit- and phase-flip code.

The Shor Code

Outer code:
Phase-flip code

Inner code:
Bit-flip code

We now concatenate the bit- and phase-flip code.

The Shor Code

The Shor Code

UNIVERSITY OF
OXFORD

The Shor Code

Outer code:
Phase-flip code

Inner code:
Bit-flip code

We now concatenate the bit- and phase-flip code.

The Shor code can correct a single bit- and phase-flip!

The Shor Code

UNIVERSITY OF

 OXFORD
The Miracle: Discretisation of Errors

Miraculously, correcting bit- and phase-flips is enough!

The essential insight: Paulis form a basis of single-qubit operators

Informally
Anything that happens to a single qubit is a superposition of nothing, a bit-flip, a phase-flip, and a bit- and phase-flip together

UNIVERSITY OF

 OXFORD
The Miracle: Discretisation of Errors

Miraculously, correcting bit- and phase-flips is enough!

The essential insight: Paulis form a basis of single-qubit operators

Informally
Anything that happens to a single qubit is a superposition of nothing, a bit-flip, a phase-flip, and a bit- and phase-flip together

After application of arbitrary single-qubit operator

$$
\begin{aligned}
U|\psi\rangle_{\text {Shor }}= & a|\psi\rangle_{\text {Shor }}+ \\
& b X|\psi\rangle_{\text {Shor }}+ \\
& c Z|\psi\rangle_{\text {Shor }}+ \\
& d X Z|\psi\rangle_{\text {Shor }}
\end{aligned}
$$

All correspond to different set of measurement outcomes!

The Miracle: Discretisation of Errors

Miraculously, correcting bit- and phase-flips is enough!

The essential insight: Paulis form a basis of single-qubit operators

Informally
Anything that happens to a single qubit is a superposition of nothing, a bit-flip, a phase-flip, and a bit- and phase-flip together

After application of arbitrary single-qubit operator

$$
\begin{aligned}
U|\psi\rangle_{\text {Shor }}= & a|\psi\rangle_{\text {Shor }}+ \\
& b X|\psi\rangle_{\text {Shor }}+ \\
& c Z|\psi\rangle_{\text {Shor }}+ \\
& d X Z|\psi\rangle_{\text {Shor }}
\end{aligned}
$$

> All correspond to different set of measurement outcomes!

Measuring the code checks will collapse the erroneous state into a discrete set of outcomes:
 nothing, bit-flip, phase-flip, or both flips

```
The Shor Code (and also the Steane Code!) can correct an arbitrary single-qubit error.
```

The Shor Code
(and also the Steane Code!) can correct an arbitrary single-qubit error.

Remember that this is highly non-trivial:
 Fault tolerant "random access machines" do not exists!

\Longrightarrow QEC is possible because quantum mechanics is not just "wave mechanics"
It is a dance of a continuous (entangled) quantum states and discrete (projective) measurements!

The Shor code is intuitive,

 but not very practical:For example size-5 Shor code has checks

The Shor code is intuitive, but not very practical:

For example size-5 Shor code has checks

\[

\]

Have Mercy with our Colleagues in the Lab!

The Shor code is intuitive, but not very practical:

For example size-5 Shor code has checks

$$
Z_{1} Z_{2}, Z_{2} Z_{3}, Z_{3} Z_{4}, Z_{4} Z_{5}
$$

$$
Z_{21} Z_{22}, Z_{22} Z_{23}, Z_{23} Z_{24}, Z_{24} Z_{25}
$$

$$
X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8} X_{9} X_{10}
$$

$X_{6} \ldots X_{15}$	Checks of outer code get harder and harder to
\ldots	measure
$X_{16} \ldots X_{25}$	

Better: Low-Density Parity Check (LDPC) codes
Most well-studied example: the surface code

This has been built!

As a sketch ...

- $L=3$ surface code built by the Walraff Group at ETH
- Because it is an academic group, we even get a picture of the device!

QUDEV
... and as a photograph

From Krinner et. al Nature (2022)
https://doi.org/10.1038/s41586-022-04566-8

This has been built!

As a sketch ...

- $L=3$ surface code built by the Walraff Group at ETH
- Because it is an academic group, we even get a picture of the device!
... and as a photograph

From Krinner et. al Nature (2022)
https://doi.org/10.1038/s41586-022-04566-8

This has been built!

As a sketch ...

- $L=3$ surface code built by the Walraff Group at ETH
- Because it is an academic group, we even get a picture of the device!

QUDEV
... and as a photograph

From Krinner et. al Nature (2022)
https://doi.org/10.1038/s41586-022-04566-8

Google even built two!

$$
L=5 \text { and } L=3
$$

- No picture :(
- Only the "best" $L=5$ code is better than $L=3$?

The "threshold" of a code

For QEC to work, the constituents have to be good enough!

The "threshold" of a code

For QEC to work, the constituents have to be good enough!

Formally: error rate $p_{\text {err }}<p_{\text {th }}$, where $p_{\text {th }}$ is the threshold rate

$$
\begin{aligned}
& p_{\text {fail }} \rightarrow 0 \text { as } L \rightarrow \infty \text { for } p_{\text {err }}<p_{\text {th }} \\
& p_{\text {fail }} \rightarrow \frac{1}{2} \text { as } L \rightarrow \infty \text { for } p_{\text {err }}>p_{\text {th }}
\end{aligned}
$$

UNIVERSITY OF

How many errors are too much?

The "threshold" of a code

For QEC to work, the constituents have to be good enough!

Formally: error rate $p_{\mathrm{err}}<p_{\mathrm{th}}$, where p_{th} is the threshold rate

$$
\begin{aligned}
& p_{\text {fail }} \rightarrow 0 \text { as } L \rightarrow \infty \text { for } p_{\text {err }}<p_{\text {th }} \\
& p_{\text {fail }} \rightarrow \frac{1}{2} \text { as } L \rightarrow \infty \text { for } p_{\text {err }}>p_{\text {th }}
\end{aligned}
$$

Modelling the threshold

- Error correction is a complicated statistical process
- Remarkably, with certain assumptions on the noise, it maps exactly on a well-known model of condensed matter physics: the random-bond Ising model 1,2

How many errors are too much?

The "threshold" of a code

For QEC to work, the constituents have to be good enough!

Formally: error rate $p_{\mathrm{err}}<p_{\mathrm{th}}$, where p_{th} is the threshold rate

$$
\begin{aligned}
& p_{\text {fail }} \rightarrow 0 \text { as } L \rightarrow \infty \text { for } p_{\text {err }}<p_{\text {th }} \\
& p_{\text {fail }} \rightarrow \frac{1}{2} \text { as } L \rightarrow \infty \text { for } p_{\text {err }}>p_{\text {th }}
\end{aligned}
$$

Modelling the threshold

- Error correction is a complicated statistical process
- Remarkably, with certain assumptions on the noise, it maps exactly on a well-known model of condensed matter physics: the random-bond Ising model 1,2

Phase diagram of the the RBIM ${ }^{3}$

Errors being correctible

spin model is in ferromagnetic phase

Threshold of the surface code:

$$
p_{\mathrm{th}}=p_{c}^{(R B I M)} \approx 11 \%
$$

Disorder strength

OXFORD
Active research: "better" codes:

Hyperbolic surface codes

Defined on regular tilings of the hyperbolic plane

M. C. Escher: Circle Limit III

UNIVERSITY OF

 OXFORDActive research: "better" codes:

Hyperbolic surface codes

Defined on regular tilings of the hyperbolic plane

M. C. Escher: Circle Limit III

- Harder to built, since not naturally embedded into planar geometry
- But: if built has much reduced overhead (per qubit)_compared to other codes
(\#logical qubits) \propto (\#physical qubits)

Active research: "better" codes:

Hyperbolic surface codes

Defined on regular tilings of the hyperbolic plane

- Harder to built, since not naturally embedded into planar geometry
- But: if built has much reduced overhead (per qubit)_compared to other codes
(\#logical qubits) \propto (\#physical qubits)

Such geometries can be built in principle!

M. C. Escher: Circle Limit III

An artificial hyperbolic lattice [Kollar et al. Nature (2019)]

Active research: "better" codes:

Hyperbolic surface codes

Defined on regular tilings of the hyperbolic plane

- Harder to built, since not naturally embedded into planar geometry
- But: if built has much reduced overhead (per qubit)_compared to other codes
(\#logical qubits) \propto (\#physical qubits)

Such geometries can be built in principle!

M. C. Escher: Circle Limit III

An artificial hyperbolic lattice [Kollar et al. Nature (2019)]

Recent result: modelling the threshold of hyperbolic codes

- $\{5,5\}$ code, informationtheoretic optimum performance
- Modelling also yielded new insights into statistical mechanics in curved geometries

Summary \& Conclusion

Quantum Error Correction is (surprisingly!) possible

- This is in contrast to other proposed alternative models of computation, like random access machines
- Constituents must have minimal fidelity for QEC to work (threshold theorem)

Experiments are "scratching

 the threshold"

[^0]Current research: finding better codes and modelling their error correction

Summary \& Conclusion

Quantum Error Correction is (surprisingly!) possible

- This is in contrast to other proposed alternative models of computation, like random access machines
- Constituents must have minimal fidelity for QEC to work (threshold theorem)

[^1]Experiments are "scratching the threshold"

Thank you! Questions?

Current research: finding better codes and modelling their error correction

[^0]: From Krinner et. al Nature (2022)
 https://doi.org/10.1038/s41586-022-04566-8

[^1]: From Krinner et. al Nature (2022)
 https://doi.org/10.1038/s41586-022-04566-8

