The Miracle of Quantum Error Correction

Hillary 2024 Morning of Theoretical Physics

Benedikt Placke

benedikt.placke@physics.ox.ac.uk

UNIVERSITY OF OXFORD

Classical Information

The "classical" bit is the fundamental unit of information.

Classical Bit

 $\sigma \in \{0,1\}$

It is either

- 0 or 1
- Yes or No
- Dead of Alive

Classical Information

The "classical" bit is the fundamental unit of information.

Classical Bit

 $\sigma \in \{0,1\}$

It is either

- 0 or 1
- Yes or No
- Dead of Alive

benedikt.placke@physics.ox.ac.uk

Quantum Information

Information needed to describe "minimal" quantum system

Qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

$$\alpha, \beta \in \mathbb{C}, |\alpha|^2 + |\beta|^2 = 1$$

Classical Information

The "classical" bit is the fundamental unit of information.

Classical Bit

 $\sigma \in \{0,1\}$

It is either

- 0 or 1
- Yes or No
- Dead of Alive

benedikt.placke@physics.ox.ac.uk

Quantum Information

Information needed to describe "minimal" quantum system

Qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

$$\alpha, \beta \in \mathbb{C}, \ |\alpha|^2 + |\beta|^2 = 1$$

Upon *measuring*, we learn

- 0 or 1
- Yes or No
- Dead or Alive

with probability $|\alpha|^2$ and $|\beta|^2$

Classical Information

The "classical" bit is the fundamental unit of information.

Classical Bit

 $\sigma \in \{0,1\}$

It is either

- 0 or 1
- Yes or No
- Dead of Alive

benedikt.placke@physics.ox.ac.uk

Quantum Information

Information needed to describe "minimal" quantum system

Qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

$$\alpha, \beta \in \mathbb{C}, \ |\alpha|^2 + |\beta|^2 = 1$$

measure

Upon *measuring*, we learn

- 0 or 1
- Yes or No
- Dead or Alive

with probability $|\alpha|^2$ and $|\beta|^2$

This weirdness can be utilised!

Deutsch & Jozsa (1992); Shor (1994); Ekert (1991)

Superconducting Qubits

Google Quantum AI

Oxford: Peter Leek

IBM Quantum

ALICE & BOB

Y()

Superconducting Qubits

Google Quantum AI

Oxford: Peter Leek

IBM Quantum

ALICE & BOB

Y()

Oxford: David Lucas NIST QUANTINUUM IONQ

Trapped Ions

Oxford

Superconducting Qubits

Google Quantum Al

Oxford: Peter Leek

IBM Quantum

ALICE & BOB

Y()

Oxford: David Lucas NIST QUANTINUUM IONQ

Oxford

IQuEra> Computing Inc.

Superconducting Qubits

Google Quantum Al

Oxford: Peter Leek

IBM Quantum

ALICE & BOB

Y()

Oxford: David Lucas NIST QUANTINUUM ONQ

Oxford

And many other platforms ...

 Ψ **PsiQuantum** Photonic

D:WOVE Quantum Annealers

QUANTUM MOTION

Spin Qubits

Superconducting Qubits

Google Quantum Al

Oxford: Peter Leek

IBM Quantum

ALICE & BOB

ON THE POWER OF RANDOM ACCESS MACHINES

Arnold Schönhage Mathematisches Institut der Universität Tübingen, Germany

Abstract. We study the power of deterministic successor RAM's with extra instructions like +,*, + and the associated classes of problems decidable in polynomial time. Our main results are $NP \subseteq PTIME(+, *, \div)$ and $PTIME(+,*) \subseteq RP$, where RP denotes the class of problems randomly decidable (by probabilistic TM's) in polynomial time.

Schönhagen (1979); <u>https://doi.org/10.1007/3-540-09510-1_42</u>

ON THE POWER OF RANDOM ACCESS MACHINES

Arnold Schönhage Mathematisches Institut der Universität Tübingen, Germany

Abstract. We study the power of deterministic successor RAM's with extra instructions like +,*, + and the associated classes of problems decidable in polynomial time. Our main results are $NP \subseteq PTIME(+, *, \div)$ and $PTIME(+,*) \subseteq RP$, where RP denotes the class of problems randomly decidable (by probabilistic TM's) in polynomial time.

Schönhagen (1979); <u>https://doi.org/10.1007/3-540-09510-1_42</u>

Suppose we had access an **Random Access Machine**

- Memory can store **floating point numbers** $\vec{\sigma} = (f_1, f_2, \dots, f_n)$
- Can perform deterministic, arbitrarily precise arithmetic $(+, *, \div)$ on $\vec{\sigma}$

ON THE POWER OF RANDOM ACCESS MACHINES

Arnold Schönhage Mathematisches Institut der Universität Tübingen, Germany

Abstract. We study the power of deterministic successor RAM's with extra instructions like +,*, + and the associated classes of problems decidable in polynomial time. Our main results are $NP \subseteq PTIME(+, *, \div)$ and $PTIME(+,*) \subseteq RP$, where RP denotes the class of problems randomly decidable (by probabilistic TM's) in polynomial time.

Schönhagen (1979); <u>https://doi.org/10.1007/3-540-09510-1_42</u>

Such RAMs would be vastly more powerful even than quantum computers and could **provably** solve many interesting and relevant problems

Suppose we had access an **Random Access Machine**

- Memory can store **floating point numbers** $\vec{\sigma} = (f_1, f_2, \dots, f_n)$
- Can perform deterministic, arbitrarily precise arithmetic $(+, *, \div)$ on $\vec{\sigma}$

ON THE POWER OF RANDOM ACCESS MACHINES

Arnold Schönhage Mathematisches Institut der Universität Tübingen, Germany

Abstract. We study the power of deterministic successor RAM's with extra instructions like +,*, + and the associated classes of problems decidable in polynomial time. Our main results are $NP \subseteq PTIME(+, *, \div)$ and $PTIME(+,*) \subseteq RP$, where RP denotes the class of problems randomly decidable (by probabilistic TM's) in polynomial time.

Schönhagen (1979); <u>https://doi.org/10.1007/3-540-09510-1_42</u>

Such RAMs would be vastly more powerful even than quantum computers and could provably solve many interesting and relevant problems

but...

Suppose we had access an **Random Access Machine**

- Memory can store **floating point numbers** $\vec{\sigma} = (f_1, f_2, \dots, f_n)$
- Can perform deterministic, arbitrarily precise arithmetic $(+, *, \div)$ on $\vec{\sigma}$

No known way to avoid accumulation of errors in floating point arithmetic

No known fault-tolerant implementation of RAMs 🙁

Classical, Discrete Error Correction is Simple!

Imagine sending a single bit through "noise"

$$\sigma = 0$$
Noise
$$\sigma = \begin{cases} 1 & \text{with prob. } p \\ 0 & \text{with prob. } 1 - p \end{cases}$$

So what does work, anyway?

Classical, Discrete Error Correction is Simple!

Imagine sending a single bit through "noise"

$$\sigma = 0$$
Noise
$$\sigma = \begin{cases} 1 & \text{with prob. } p \\ 0 & \text{with prob. } 1 - p \end{cases}$$

We ourselves do simple error correction intuitively: the <u>repetition code</u>

$$\overline{0} = \underbrace{0...0}_{n \text{ times}} \qquad \overline{1} = \underbrace{1...1}_{n \text{ times}}$$

If noise flips less than half the bits ($p \ll 1$), we can recover the original state by majority voting.

benedikt.placke@physics.ox.ac.uk

So what does work, anyway?

No cloning theorem

We cannot "copy" arbitrary quantum information!

benedikt.placke@physics.ox.ac.uk

But <u>Quantum</u> Error correction !?

No cloning theorem

We cannot "copy" arbitrary quantum information!

Proof. Imagine there exists an operation U

 $U|\psi\rangle|e\rangle = |\psi\rangle|\psi\rangle$ for all states ψ and some auxiliary state e

Then
$$\langle \psi | \phi \rangle \underbrace{\langle e | e \rangle}_{=1} = \langle \psi | \langle e | \underbrace{U^{\dagger}U}_{=1} | \phi \rangle | e \rangle = \langle \psi | \phi \rangle^{2}$$

= 1
 $\Rightarrow \langle \psi | \phi \rangle \in \{0,1\}$ So ψ and ϕ are identical or orthogonal!

No cloning theorem

We cannot "copy" arbitrary quantum information!

Proof. Imagine there exists an operation U

 $U|\psi\rangle|e\rangle = |\psi\rangle|\psi\rangle$ for all states ψ and some auxiliary state e

Then
$$\langle \psi | \phi \rangle \underbrace{\langle e | e \rangle}_{=1} = \langle \psi | \langle e | \underbrace{U^{\dagger}U}_{=1} | \phi \rangle | e \rangle = \langle \psi | \phi \rangle^{2}$$

= 1
 $\Rightarrow \langle \psi | \phi \rangle \in \{0,1\}$ So ψ and ϕ are identical or orthogonal!

No cloning theorem

We cannot "copy" arbitrary quantum information!

Proof. Imagine there exists an operation U

 $U|\psi\rangle|e\rangle = |\psi\rangle|\psi\rangle$ for all states ψ and some auxiliary state e

Then
$$\langle \psi | \phi \rangle \underbrace{\langle e | e \rangle}_{=1} = \langle \psi | \langle e | \underbrace{U^{\dagger}U}_{=1} | \phi \rangle | e \rangle = \langle \psi | \phi \rangle^{2}$$

= 1
 $\Rightarrow \langle \psi | \phi \rangle \in \{0,1\}$ So ψ and ϕ are identical or orthogonal!

Measurements are destructive

We cannot do "majority voting" since measurements are projective

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

measure Z $\begin{cases} |0\rangle & \text{with problem} \\ |1\rangle & \text{with problem} \end{cases}$

No cloning theorem

We cannot "copy" arbitrary quantum information!

Proof. Imagine there exists an operation U

 $U|\psi\rangle|e\rangle = |\psi\rangle|\psi\rangle$ for all states ψ and some auxiliary state e

Then
$$\langle \psi | \phi \rangle \langle e | e \rangle = \langle \psi | \langle e | \underline{U^{\dagger}U} | \phi \rangle | e \rangle = \langle \psi | \phi \rangle^{2}$$

= 1 = 1
 $\Rightarrow \langle \psi | \phi \rangle \in \{0, 1\}$ So ψ and ϕ are identical or orthood

 $\Rightarrow \langle \psi | \phi \rangle \in \{0,1\}$ So ψ and ϕ are identical or orthogonal!

Errors on Bloch sphere are continuous

- Errors can be <u>arbitrarily small rotations</u> on Bloch Sphere
- If we cannot even do floating point arithmetic correct, is there any hope of correcting those?

Measurements are destructive

We cannot do "majority voting" since measurements are projective

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

measure Z $\begin{cases} |0\rangle & \text{with problem} \\ |1\rangle & \text{with problem} \end{cases}$

No cloning theorem

<u>We cannot "copy" arbitrary quantum information!</u>

Proof. Imagine there exists an operation U

 $U|\psi\rangle|e\rangle = |\psi\rangle|\psi\rangle$ for all states ψ and some auxiliary state e

Then
$$\langle \psi | \phi \rangle \langle e | e \rangle = \langle \psi | \langle e | \underline{U^{\dagger}U} | \phi \rangle | e \rangle = \langle \psi | \phi \rangle^{2}$$

= 1 = 1
 $\Rightarrow \langle \psi | \phi \rangle \in \{0, 1\}$ So ψ and ϕ are identical or orthood

 $\Rightarrow \langle \psi | \phi \rangle \in \{0,1\}$ So ψ and ϕ are identical or orthogonal!

Errors on Bloch sphere are continuous

- Errors can be <u>arbitrarily small rotations</u> on Bloch Sphere
- If we cannot even do floating point arithmetic correct, is there any hope of correcting those?

Measurements are destructive

We cannot do "majority voting" since measurements are projective

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

measure Z $\begin{cases} |0\rangle & \text{with promotion} \\ |1\rangle & \text{with promotion} \end{cases}$

Surprisingly:

Shor (1995) and Steane (1996)

Quantum Error Correction is Possible!

But we need all the weirdness (and beauty) of Quantum Mechanics to make it work

Cloning any state is not necessary!

- Quantum CNOT clones states |0> and |1> (which are orthogonal)
- Produces redundancy by <u>entanglement</u>

Cloning any state is not necessary!

- Quantum CNOT clones states |0> and |1> (which are orthogonal)
- Produces redundancy by <u>entanglement</u>

The quantum version of our redundant coffee/tea order:

benedikt.placke@physics.ox.ac.uk

Cloning any state is not necessary!

- Quantum CNOT clones states |0> and |1> (which are orthogonal)
- Produces redundancy by <u>entanglement</u>

The quantum version of our redundant coffee/tea order:

benedikt.placke@physics.ox.ac.uk

What about measurements?

$$\left|\bar{\psi}\right\rangle = \alpha \left|000\right\rangle + \beta \left|111\right\rangle$$

measure Z_1 "what is the value of the first bit"?

UNIVERSITY OF The Quantum Repetition Code (1/2) DXFORD

Cloning any state is not necessary!

- Quantum CNOT clones states $|0\rangle$ and $|1\rangle$ (which are orthogonal)
- Produces redundancy by <u>entanglement</u>

The quantum version of our redundant coffee/tea order:

benedikt.placke@physics.ox.ac.uk

What about measurements?

$$|\bar{\psi}\rangle = \alpha |000\rangle + \beta |111\rangle$$

measure Z_1 "what is the value of the first bit"?

Not well defined in $|\bar{\psi}\rangle$

Cloning any state is not necessary!

- Quantum CNOT clones states |0> and |1> (which are orthogonal)
- Produces redundancy by <u>entanglement</u>

The quantum version of our redundant coffee/tea order:

benedikt.placke@physics.ox.ac.uk

What about measurements?

$$|\bar{\psi}\rangle = \alpha |000\rangle + \beta |111\rangle$$

measure Z₁ "what is the value of the first bit"?

Instead measure parity Z_1Z_2 : "are the first two bits equal?"

well defined in $\ket{ar{\psi}}$

Other parity Z_2Z_3 also well defined!

Cloning any state is not necessary!

- Quantum CNOT clones states |0> and |1> (which are orthogonal)
- Produces redundancy by <u>entanglement</u>

The quantum version of our redundant coffee/tea order:

benedikt.placke@physics.ox.ac.uk

What about measurements?

$$|\bar{\psi}\rangle = \alpha |000\rangle + \beta |111\rangle$$

measure Z₁ "what is the value of the first bit"?

Instead measure parity Z_1Z_2 : "are the first two bits equal?"

well defined in $|ar{\psi}
angle$

Other parity Z_2Z_3 also well defined!

Measuring either parity in $|\bar{\psi}\rangle$ will

 \Rightarrow will yield +1 (=) with certainty

 \Rightarrow will leave the state <u>invariant</u>

 \Rightarrow can be used to diagnose errors! (next slide)

benedikt.placke@physics.ox.ac.uk

Parity Measurements

 Z_1Z_2 Z_2Z_3

"are first/last two bits equal?"

Consider an example error

$$X | 0 \rangle = | 1 \rangle$$
$$X | 1 \rangle = | 0 \rangle$$

"bit-flips" / Pauli-X

benedikt.placke@physics.ox.ac.uk

Parity Measurements

 Z_1Z_2 Z_2Z_3

"are first/last two bits equal?"

Consider an example error

$$X|0\rangle = |1\rangle$$
$$X|1\rangle = |0\rangle$$

"bit-flips" / Pauli-X

So what happens to the encoded state?

Parity Measurements

 Z_1Z_2 Z_2Z_3

"are first/last two bits equal?"

Consider an example error

$$X|0\rangle = |1\rangle$$
$$X|1\rangle = |0\rangle$$

"bit-flips" / Pauli-X

So what happens to the encod

$$X_1 | \bar{\psi} \rangle = \alpha | 100 \rangle + \beta | 011$$

Parity Measurements

ded state?				
	Z_1Z_2	Z_2Z_3		
\rangle				

Consider an example error

$$X|0\rangle = |1\rangle$$
$$X|1\rangle = |0\rangle$$

"bit-flips" / Pauli-X

So what happens to the encoded state?

$$X_1 | \bar{\psi} \rangle = \alpha | 100 \rangle + \beta | 011$$

Parity Measurements

Consider an example error

$$X|0\rangle = |1\rangle$$
$$X|1\rangle = |0\rangle$$

"bit-flips" / Pauli-X

So what happens to the encod

$$X_1 |\bar{\psi}\rangle = \alpha |100\rangle + \beta |011$$

$$X_2 \left| \bar{\psi} \right\rangle = \alpha \left| 010 \right\rangle + \beta \left| 101 \right\rangle$$

Parity Measurements

led state?				
	Z_1Z_2	Z_2Z_3		
\rangle	\neq	=		
\rangle	\neq	\neq		

Consider an example error

$$X|0\rangle = |1\rangle$$
$$X|1\rangle = |0\rangle$$

"bit-flips" / Pauli-X

So what happens to the encod

$$X_1 | \bar{\psi} \rangle = \alpha | 100 \rangle + \beta | 011$$

$$X_2 \left| \bar{\psi} \right\rangle = \alpha \left| 010 \right\rangle + \beta \left| 101 \right\rangle$$

 $X_3 |\bar{\psi}\rangle = \alpha |001\rangle + \beta |110\rangle$

Parity Measurements

led state?				
	Z_1Z_2	Z_2Z_3		
\rangle	\neq			
\rangle	\neq	\neq		
\rangle	=	\neq		

UNIVERSITY OF The Quantum Repetition Code (2/2) DXFORD

Consider an example error

$$X|0\rangle = |1\rangle$$
$$X|1\rangle = |0\rangle$$

"bit-flips" / Pauli-X

So what happens to the encoded state?

- $X_1 | \bar{\psi} \rangle = \alpha | 100 \rangle + \beta | 011 \rangle$
- $X_2 |\bar{\psi}\rangle = \alpha |010\rangle + \beta |101\rangle$

 $X_3 |\bar{\psi}\rangle = \alpha |001\rangle + \beta |110\rangle$

stored quantum information!

Parity Measurements

- Unique outcome of parity measurements in each case : "syndrome"
- We can correct (single) bit flips without learning anything about the

Let's do something more <u>quantum</u>

Bit flip code encoding

Let's do something more quantum

Bit Phase flip code encoding

Let's do something more <u>quantum</u>

Bit Phase flip code encoding

Let's do something more quantum

Bit Phase flip code encoding

benedikt.placke@physics.ox.ac.uk

Hadamard Gate implements "basis change"

$$X_i \leftrightarrow Z_i$$

Checks become

 X_1X_2, X_2X_3

This code corrects single phase-flips!

 $Z|+\rangle = |-\rangle$ $Z|-\rangle = |+\rangle$ "phase-flips" / Pauli-Z

remember:

 $Z|0\rangle = |0\rangle$ $Z|1\rangle = -|1\rangle$

The Shor Code

We now <u>concatenate</u> the bit- and phase-flip code.

The Shor Code

We now <u>concatenate</u> the bit- and phase-flip code.

The Shor Code

We now <u>concatenate</u> the bit- and phase-flip code.

$$\gamma_{\text{Shor}} = \alpha | \bar{+} \bar{+} \bar{+} \rangle + \beta | \bar{-} \bar{-} \rangle$$

Outer code: Phase-flip code

The Shor Code

We now <u>concatenate</u> the bit- and phase-flip code.

$$|\bar{-}\rangle = \frac{1}{\sqrt{2}} (|000\rangle - |111\rangle)$$
Inner co
Bit-flip of
Bit-flip of
Shor = $\alpha |\bar{+}\bar{+}\bar{+}\rangle + \beta |\bar{-}\bar{-}\rangle$
Outer code:
Phase-flip cod
 $|\bar{+}\rangle = \frac{1}{\sqrt{2}} (|000\rangle + |111\rangle)$

benedikt.placke@physics.ox.ac.uk

The Shor Code

We now <u>concatenate</u> the bit- and phase-flip code.

$$|-\rangle = \frac{1}{\sqrt{2}} (|000\rangle - |111\rangle)$$
Inner co
Bit-flip of
Shor = $\alpha |+++\rangle + \beta |=-=\rangle$
Outer code:
Phase-flip cod
 $|+\rangle = \frac{1}{\sqrt{2}} (|000\rangle + |111\rangle)$

The Shor code can correct a single bit- and phase-flip!

The Shor Code

We now <u>concatenate</u> the bit- and phase-flip code.

$$|\bar{-}\rangle = \frac{1}{\sqrt{2}} (|000\rangle - |111\rangle)$$
Inner co
Bit-flip of
Bit-flip of
Shor = $\alpha |\bar{+}\bar{+}\bar{+}\rangle + \beta |\bar{-}\bar{-}\rangle$
Outer code:
Phase-flip cod

The Shor code can correct a single bit- and phase-flip!

Parity measurements:

$$Z_1Z_2, Z_2Z_3 = Z_4Z_5, Z_5Z_6 = Z_7Z_8, Z_8Z_9$$
 Checks of inner
 $X_1X_2X_3X_4X_5X_6 = X_4X_5X_6X_7X_8X_9$ Checks of oute

r code er code

OXFORD The Miracle: Discretisation of Errors

benedikt.placke@physics.ox.ac.uk

UNIVERSITY OF **OXFORD** The Miracle: Discretisation of Errors

Miraculously, correcting bit- and phase-flips is enough!

The essential insight: Paulis form a basis of single-qubit operators

Informally Anything that happens to a single qubit is a superposition of nothing, a bit-flip, a phase-flip, and a bit- and phase-flip together

UNIVERSITY OF **OXFORD** The Miracle: Discretisation of Errors

Miraculously, correcting bit- and phase-flips is enough!

The essential insight: Paulis form a basis of single-qubit operators

Informally Anything that happens to a single qubit is a superposition of nothing, a bit-flip, a phase-flip, and a bit- and phase-flip together

After application of arbitrary single-qubit operator

 $U|\psi\rangle_{\text{Shor}} = a|\psi\rangle_{\text{Shor}} +$ $b X |\psi\rangle_{\text{Shor}} +$ $c Z |\psi\rangle_{\text{Shor}} +$ $d XZ |\psi\rangle_{\text{Shor}}$

All correspond to different set of measurement outcomes!

OXFORD The Miracle: Discretisation of Errors

Miraculously, correcting bit- and phase-flips is enough!

The essential insight: Paulis form a basis of single-qubit operators

Informally Anything that happens to a single qubit is a superposition of nothing, a bit-flip, a phase-flip, and a bit- and phase-flip together

After application of arbitrary single-qubit operator

 $U|\psi\rangle_{\text{Shor}} = a|\psi\rangle_{\text{Shor}} +$ $b X |\psi\rangle_{\text{Shor}} +$ $c Z |\psi\rangle_{\text{Shor}} +$ $d XZ |\psi\rangle_{\text{Shor}}$

All correspond to different set of measurement outcomes!

Measuring the code checks will collapse the erroneous state into a discrete set of outcomes:

nothing, bit-flip, phase-flip, or both flips

DXFORD

benedikt.placke@physics.ox.ac.uk

Preliminary Summary

The Shor Code (and also the Steane Code!) can correct an arbitrary single-qubit error.

Preliminary Summary

QEC is possible because quantum mechanics is not just "wave mechanics"

It is a dance of a continuous (entangled) quantum states and discrete (projective) measurements!

benedikt.placke@physics.ox.ac.uk

The Shor Code (and also the Steane Code!) can correct an arbitrary single-qubit error.

Remember that this is highly non-trivial: Fault tolerant "random access machines" do not exists!

Have Mercy with our Colleagues in the Lab!

The Shor code is intuitive, but not very practical:

For example size-5 Shor code has checks

benedikt.placke@physics.ox.ac.uk

Have Mercy with our Colleagues in the Lab!

The Shor code is intuitive, but not very practical:

For example size-5 Shor code has checks

 Z_1Z_2 , Z_2Z_3 , Z_3Z_4 , Z_4Z_5 $Z_{21}Z_{22}$, $Z_{22}Z_{23}$, $Z_{23}Z_{24}$, $Z_{24}Z_{25}$ $X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10}$ $X_6...X_{15}$ **Checks of outer** code get harder and harder to $X_{16}...X_{25}$ measure

Have Mercy with our Colleagues in the Lab!

The Shor code is intuitive, but not very practical:

For example size-5 Shor code has checks

 Z_1Z_2 , Z_2Z_3 , Z_3Z_4 , Z_4Z_5 $Z_{21}Z_{22}, Z_{22}Z_{23}, Z_{23}Z_{24}, Z_{24}Z_{25}$ $X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10}$

 $X_6...X_{15}$ **Checks of outer** code get harder and harder to $X_{16}...X_{25}$ measure

Better: Low-Density Parity Check (LDPC) codes

Most well-studied example: the <u>surface code</u>

As a sketch

- L = 3 surface code built by the Walraff Group at ETH
- Because it is an academic group, we even get a picture of the device!

... and as a photograph

From Krinner et. al Nature (2022) https://doi.org/10.1038/s41586-022-04566-8

This has been built!

As a sketch ...

- L = 3 surface code built by the Walraff Group at ETH
- Because it is an academic group, we even get a picture of the device!

... and as a photograph

From Krinner et. al Nature (2022) https://doi.org/10.1038/s41586-022-04566-8

This has been built!

As a sketch

- L = 3 surface code built by the Walraff Group at ETH
- Because it is an academic group, we even get a picture of the device!

... and as a photograph

From Krinner et. al Nature (2022) https://doi.org/10.1038/s41586-022-04566-8

This has been built!

Google even built two!

L = 5 and L = 3

- No picture :(
- Only the "best" L = 5 code is better than L = 3?

For QEC to work, the constituents have to be good enough!

benedikt.placke@physics.ox.ac.uk

How many errors are too much?

For QEC to work, the constituents have to be good enough!

Formally: error rate $p_{\rm err} < p_{\rm th}$, where $p_{\rm th}$ is the <u>threshold rate</u>

$$p_{\text{fail}} \rightarrow 0 \text{ as } L \rightarrow \infty \text{ for } p_{\text{err}} < p_{\text{th}}$$

$$p_{\text{fail}} \rightarrow \frac{1}{2} \text{ as } L \rightarrow \infty \text{ for } p_{\text{err}} > p_{\text{th}}$$

benedikt.placke@physics.ox.ac.uk

How many errors are too much?

For QEC to work, the constituents have to be good enough!

Formally: error rate $p_{\rm err} < p_{\rm th}$, where $p_{\rm th}$ is the <u>threshold rate</u>

$$p_{\text{fail}} \rightarrow 0 \text{ as } L \rightarrow \infty \text{ for } p_{\text{err}} < p_{\text{th}}$$

$$p_{\text{fail}} \rightarrow \frac{1}{2} \text{ as } L \rightarrow \infty \text{ for } p_{\text{err}} > p_{\text{th}}$$

benedikt.placke@physics.ox.ac.uk

How many errors are too much?

Modelling the threshold

- Error correction is a complicated statistical process
- Remarkably, with certain assumptions on the noise, it maps exactly on a well-known model of condensed matter physics: the <u>random-bond Ising model</u>^{1,2}

For QEC to work, the constituents have to be good enough!

Formally: error rate $p_{\rm err} < p_{\rm th}$, where $p_{\rm th}$ is the <u>threshold rate</u>

$$p_{\text{fail}} \rightarrow 0 \text{ as } L \rightarrow \infty \text{ for } p_{\text{err}} < p_{\text{th}}$$

$$p_{\text{fail}} \rightarrow \frac{1}{2} \text{ as } L \rightarrow \infty \text{ for } p_{\text{err}} > p_{\text{th}}$$

benedikt.placke@physics.ox.ac.uk

How many errors are too much?

Modelling the threshold

¹Dennis et al. (2001), ²Wang et al (2002) ³Chubb, Flammia (2019)

Hyperbolic surface codes

Defined on regular tilings of the hyperbolic plane

benedikt.placke@physics.ox.ac.uk

M. C. Escher: Circle Limit III

Hyperbolic surface codes

Defined on regular tilings of the hyperbolic plane

- Harder to built, since not naturally embedded into planar geometry
- But: if built has <u>much reduced overhead</u> (per qubit)_compared to other codes

(#logical qubits) \propto (#physical qubits)

benedikt.placke@physics.ox.ac.uk

M. C. Escher: Circle Limit III

Hyperbolic surface codes

Defined on regular tilings of the hyperbolic plane

- Harder to built, since not naturally embedded into planar geometry
- But: if built has <u>much reduced overhead</u> (per qubit)_compared to other codes

(#logical qubits) \propto (#physical qubits)

benedikt.placke@physics.ox.ac.uk

Such geometries can be built in principle!

M. C. Escher: Circle Limit III

An artificial hyperbolic lattice [Kollar et al. Nature (2019)]

Hyperbolic surface codes

Defined on regular tilings of the hyperbolic plane

- Harder to built, since not naturally embedded into planar geometry
- But: if built has <u>much reduced overhead</u> (per qubit)_compared to other codes

(#logical qubits) \propto (#physical qubits)

benedikt.placke@physics.ox.ac.uk

Such geometries can be built in principle!

M. C. Escher: Circle Limit III

An artificial hyperbolic lattice [Kollar et al. Nature (2019)]

Recent result: modelling the threshold of hyperbolic codes

- {5, 5} code, informationtheoretic optimum performance
- Modelling also yielded new insights into statistical mechanics in curved geometries

Roy, Placke, Breuckmann (2020); Placke, Breuckmann (2022)

Quantum Error Correction is (surprisingly!) possible

- This is in contrast to other proposed alternative models of computation, like random access machines
- Constituents must have minimal fidelity for QEC to work (**threshold theorem**)

From Krinner et. al Nature (2022) https://doi.org/10.1038/s41586-022-04566-8 **Experiments are "scratching** the threshold"

> **Current research: finding better codes and** modelling their error correction

benedikt.placke@physics.ox.ac.uk

Summary & Conclusion

8 \checkmark

Quantum Error Correction is (surprisingly!) possible

- This is in contrast to other proposed alternative models of computation, like random access machines
- Constituents must have minimal fidelity for QEC to work (threshold theorem)

From Krinner et. al Nature (2022) https://doi.org/10.1038/s41586-022-04566-8 **Experiments are "scratching** the threshold"

Current research: finding better codes and modelling their error correction

benedikt.placke@physics.ox.ac.uk

Summary & Conclusion

8

Thank you! **Questions?**

Physical error rate $p_{\rm err}$

