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The “classical” bit is the fundamental unit of information.

Quantum vs. Classical Information

2

Classical Information

σ ∈ {0,1}
Classical Bit

It is either

• 0 or 1

• Yes or No

• Dead of Alive

OR
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The “classical” bit is the fundamental unit of information.

Quantum vs. Classical Information

2

Classical Information

σ ∈ {0,1}
Classical Bit

Quantum Information

Information needed to describe “minimal” quantum system

α, β ∈ ℂ, |α |2 + |β |2 = 1

|ψ⟩ = α |0⟩ + β |1⟩
Qubit

It is either

• 0 or 1

• Yes or No

• Dead of Alive

OR
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The “classical” bit is the fundamental unit of information.

Quantum vs. Classical Information

2

Classical Information

σ ∈ {0,1}
Classical Bit

Quantum Information

Information needed to describe “minimal” quantum system

α, β ∈ ℂ, |α |2 + |β |2 = 1

|ψ⟩ = α |0⟩ + β |1⟩
Qubit

Upon measuring, we learn

• 0 or 1

• Yes or No

• Dead or Alive

with probability  and |α |2 |β |2

It is either

• 0 or 1

• Yes or No

• Dead of Alive

OR
measure

OR
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Classical Information

σ ∈ {0,1}
Classical Bit

Quantum Information

Information needed to describe “minimal” quantum system

α, β ∈ ℂ, |α |2 + |β |2 = 1

|ψ⟩ = α |0⟩ + β |1⟩
Qubit

Upon measuring, we learn

• 0 or 1

• Yes or No

• Dead or Alive

with probability  and |α |2 |β |2

It is either

• 0 or 1

• Yes or No

• Dead of Alive

OR
measure

OR

This weirdness can be utilised! 
Deutsch & Jozsa (1992); Shor (1994);  

Ekert (1991)

mailto:benedikt.placke@physics.ox.ac.uk


Present-Day Quantum Computers Come in Many Forms

Google Quantum AI

Superconducting Qubits

Oxford: Peter Leek

…



Present-Day Quantum Computers Come in Many Forms

Google Quantum AI

Superconducting Qubits

Oxford: Peter Leek

…

Trapped Ions

Oxford

Oxford: David Lucas

…



Present-Day Quantum Computers Come in Many Forms

Google Quantum AI

Superconducting Qubits

Oxford: Peter Leek

…

Harvard / QuEra

Reconfigurable Atom Arrays

…

Trapped Ions

Oxford

Oxford: David Lucas

…



Present-Day Quantum Computers Come in Many Forms

Google Quantum AI

Superconducting Qubits

Oxford: Peter Leek

…

And many other platforms …

Photonic

Quantum Annealers

Spin Qubits

…

Harvard / QuEra

Reconfigurable Atom Arrays

…

Trapped Ions

Oxford

Oxford: David Lucas

…
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Google Quantum AI

Superconducting Qubits

Oxford: Peter Leek

…

And many other platforms …

Photonic

Quantum Annealers

Spin Qubits

…

Harvard / QuEra

Reconfigurable Atom Arrays

…

Trapped Ions

Oxford

Oxford: David Lucas

…

All Platforms Share One Problem:



Quantum Computing is not the first “alternative”  Idea…

Schönhagen (1979); https://doi.org/10.1007/3-540-09510-1_42
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Quantum Computing is not the first “alternative”  Idea…
Suppose we had access an  
Random Access Machine

‣ Memory can store floating point numbers 
 

‣ Can perform deterministic, arbitrarily precise 
arithmetic  on 

⃗σ = ( f1, f2, …, fn)

( + , * , ÷ ) ⃗σ
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Quantum Computing is not the first “alternative”  Idea…
Suppose we had access an  
Random Access Machine

‣ Memory can store floating point numbers 
 

‣ Can perform deterministic, arbitrarily precise 
arithmetic  on 

⃗σ = ( f1, f2, …, fn)

( + , * , ÷ ) ⃗σ

➡ Such RAMs would be vastly more powerful even 
than quantum computers and could provably 
solve many interesting and relevant problems

but…

Schönhagen (1979); https://doi.org/10.1007/3-540-09510-1_42

No known way to avoid accumulation of 
errors in floating point arithmetic

No known fault-tolerant implementation 
of RAMs 🙁 

https://doi.org/10.1007/3-540-09510-1_42
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So what does work, anyway?

5

Classical, Discrete Error Correction is Simple!

Noise σ = {1 with prob . p
0 with prob . 1 − p

Imagine sending a single bit through “noise” 

σ = 0

tea
coffee

I want 
coffee

Ok, I’ll get you  
some tea!

pfail = p

p
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So what does work, anyway?

5

Classical, Discrete Error Correction is Simple!

We ourselves do simple error correction intuitively:  
the repetition code

0̄ = 0…0
⏟
n times

1̄ = 1…1
⏟
n times

Noise σ = {1 with prob . p
0 with prob . 1 − p

Imagine sending a single bit through “noise” 

If noise flips less than half the bits ( ), we can recover 

the original state by majority voting.

p ≪ 1

σ = 0

coffee!

coffee!

Tea

I want 
coffee

coffee!

coffee

coffee!
coffee!

coffee! Ok, I guess you  
meant coffee.

pfail = 𝒪(p2)

tea
coffee

I want 
coffee

Ok, I’ll get you  
some tea!

pfail = p

p

mailto:benedikt.placke@physics.ox.ac.uk


benedikt.placke@physics.ox.ac.uk

No cloning theorem

We cannot “copy” arbitrary quantum information! 

But Quantum Error correction !?

6
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No cloning theorem

We cannot “copy” arbitrary quantum information! 

But Quantum Error correction !?

6

 U |ψ⟩ |e⟩ = |ψ⟩ |ψ⟩ for all states  and some auxiliary state  ψ e

Then ⟨ψ |ϕ⟩ ⟨e |e⟩
⏟

= ⟨ψ |⟨e | U†U
⏟

|ϕ⟩ |e⟩ = ⟨ψ |ϕ⟩2

⇒ ⟨ψ |ϕ⟩ ∈ {0,1} So  and  are identical or orthogonal!ψ ϕ

= 1

Proof. Imagine there exists an operation U

= 1
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We cannot “copy” arbitrary quantum information! 
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Measurements are destructive

We cannot do “majority voting” since measurements are

projective

|ψ⟩ = α |0⟩ + β |1⟩ { |0⟩ with prob . |α |2

|1⟩ with prob . |β |2

measure Z

 U |ψ⟩ |e⟩ = |ψ⟩ |ψ⟩ for all states  and some auxiliary state  ψ e

Then ⟨ψ |ϕ⟩ ⟨e |e⟩
⏟

= ⟨ψ |⟨e | U†U
⏟

|ϕ⟩ |e⟩ = ⟨ψ |ϕ⟩2

⇒ ⟨ψ |ϕ⟩ ∈ {0,1} So  and  are identical or orthogonal!ψ ϕ

= 1

Proof. Imagine there exists an operation U

= 1
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We cannot “copy” arbitrary quantum information! 

But Quantum Error correction !?

6

Errors on Bloch sphere are continuous

‣ Errors can be arbitrarily small rotations 
on Bloch Sphere


‣ If we cannot even do floating point 
arithmetic correct, is there any hope of 
correcting those?

Measurements are destructive

We cannot do “majority voting” since measurements are

projective

|ψ⟩ = α |0⟩ + β |1⟩ { |0⟩ with prob . |α |2

|1⟩ with prob . |β |2

measure Z

 U |ψ⟩ |e⟩ = |ψ⟩ |ψ⟩ for all states  and some auxiliary state  ψ e

Then ⟨ψ |ϕ⟩ ⟨e |e⟩
⏟

= ⟨ψ |⟨e | U†U
⏟

|ϕ⟩ |e⟩ = ⟨ψ |ϕ⟩2

⇒ ⟨ψ |ϕ⟩ ∈ {0,1} So  and  are identical or orthogonal!ψ ϕ

= 1

Proof. Imagine there exists an operation U

= 1

mailto:benedikt.placke@physics.ox.ac.uk


benedikt.placke@physics.ox.ac.uk

No cloning theorem

We cannot “copy” arbitrary quantum information! 

But Quantum Error correction !?

6

Errors on Bloch sphere are continuous

‣ Errors can be arbitrarily small rotations 
on Bloch Sphere


‣ If we cannot even do floating point 
arithmetic correct, is there any hope of 
correcting those?

Measurements are destructive

We cannot do “majority voting” since measurements are

projective

|ψ⟩ = α |0⟩ + β |1⟩ { |0⟩ with prob . |α |2

|1⟩ with prob . |β |2

measure Z

Quantum Error Correction is 
Possible!

Shor (1995) and Steane (1996)

Surprisingly:

But we need all the weirdness (and beauty) of Quantum 
Mechanics to make it work 

 U |ψ⟩ |e⟩ = |ψ⟩ |ψ⟩ for all states  and some auxiliary state  ψ e

Then ⟨ψ |ϕ⟩ ⟨e |e⟩
⏟

= ⟨ψ |⟨e | U†U
⏟

|ϕ⟩ |e⟩ = ⟨ψ |ϕ⟩2

⇒ ⟨ψ |ϕ⟩ ∈ {0,1} So  and  are identical or orthogonal!ψ ϕ

= 1

Proof. Imagine there exists an operation U

= 1
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The Quantum Repetition Code (1/2)

7

|ψ⟩ = α |0⟩ + β |1⟩

|0⟩
α |00⟩ + β |11⟩

Cloning any state is not necessary!

CNOT gate

‣ Quantum CNOT clones states  and  
(which are orthogonal)


‣ Produces redundancy by entanglement 

|0⟩ |1⟩
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The Quantum Repetition Code (1/2)

7

|ψ⟩ = α |0⟩ + β |1⟩

|0⟩
α |00⟩ + β |11⟩

Cloning any state is not necessary!

CNOT gate

‣ Quantum CNOT clones states  and  
(which are orthogonal)


‣ Produces redundancy by entanglement 

|0⟩ |1⟩

|ψ⟩

|0⟩

|0⟩

α |000⟩ + β |111⟩

The quantum version of our redundant coffee/tea order:

= | ψ̄⟩
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The Quantum Repetition Code (1/2)

7

|ψ⟩ = α |0⟩ + β |1⟩

|0⟩
α |00⟩ + β |11⟩

Cloning any state is not necessary!

CNOT gate

‣ Quantum CNOT clones states  and  
(which are orthogonal)


‣ Produces redundancy by entanglement 

|0⟩ |1⟩

|ψ⟩

|0⟩

|0⟩

α |000⟩ + β |111⟩

The quantum version of our redundant coffee/tea order:

= | ψ̄⟩

What about measurements?

measure  “what is the value of the first bit”? Z1

| ψ̄⟩ = α |000⟩ + β |111⟩
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|ψ⟩ = α |0⟩ + β |1⟩

|0⟩
α |00⟩ + β |11⟩

Cloning any state is not necessary!
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(which are orthogonal)
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|ψ⟩
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α |000⟩ + β |111⟩

The quantum version of our redundant coffee/tea order:

= | ψ̄⟩

What about measurements?

measure  “what is the value of the first bit”? Z1

| ψ̄⟩ = α |000⟩ + β |111⟩

Not well 
defined in | ψ̄⟩
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The Quantum Repetition Code (1/2)

7

|ψ⟩ = α |0⟩ + β |1⟩

|0⟩
α |00⟩ + β |11⟩

Cloning any state is not necessary!

CNOT gate

‣ Quantum CNOT clones states  and  
(which are orthogonal)


‣ Produces redundancy by entanglement 

|0⟩ |1⟩

|ψ⟩

|0⟩

|0⟩

α |000⟩ + β |111⟩

The quantum version of our redundant coffee/tea order:

= | ψ̄⟩

What about measurements?

measure  “what is the value of the first bit”? Z1

| ψ̄⟩ = α |000⟩ + β |111⟩

Not well 
defined in | ψ̄⟩

Other parity  also well defined!Z2Z3

Instead measure parity  : “are the first two bits equal?” Z1Z2

well defined in | ψ̄⟩
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|ψ⟩ = α |0⟩ + β |1⟩

|0⟩
α |00⟩ + β |11⟩

Cloning any state is not necessary!

CNOT gate

‣ Quantum CNOT clones states  and  
(which are orthogonal)


‣ Produces redundancy by entanglement 

|0⟩ |1⟩

|ψ⟩

|0⟩

|0⟩

α |000⟩ + β |111⟩

The quantum version of our redundant coffee/tea order:

= | ψ̄⟩

Measuring either parity in  will| ψ̄⟩

 will yield  ( ) with certainty⇒ +1 =

 will leave the state invariant⇒

 can be used to diagnose errors! (next slide)⇒

What about measurements?

measure  “what is the value of the first bit”? Z1

| ψ̄⟩ = α |000⟩ + β |111⟩

Not well 
defined in | ψ̄⟩

Other parity  also well defined!Z2Z3

Instead measure parity  : “are the first two bits equal?” Z1Z2

well defined in | ψ̄⟩
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The Quantum Repetition Code (2/2)

8

Encoded State Parity Measurements|ψ⟩

|0⟩

|0⟩

α |000⟩ + β |111⟩

= | ψ̄⟩

Z1Z2 Z2Z3 “are first/last two bits equal?” 
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The Quantum Repetition Code (2/2)

8

Encoded State Parity Measurements|ψ⟩

|0⟩

|0⟩

α |000⟩ + β |111⟩

= | ψ̄⟩

Z1Z2 Z2Z3 “are first/last two bits equal?” 

Consider an example error

X |0⟩ = |1⟩
X |1⟩ = |0⟩

“bit-flips” / Pauli-X
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So what happens to the encoded state?

The Quantum Repetition Code (2/2)

8

Encoded State Parity Measurements|ψ⟩

|0⟩

|0⟩

α |000⟩ + β |111⟩

= | ψ̄⟩

Z1Z2 Z2Z3 “are first/last two bits equal?” 

Consider an example error

X |0⟩ = |1⟩
X |1⟩ = |0⟩

“bit-flips” / Pauli-X X1 | ψ̄⟩ = α |100⟩ + β |011⟩

Z1Z2 Z2Z3
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So what happens to the encoded state?

The Quantum Repetition Code (2/2)

8

Encoded State Parity Measurements|ψ⟩

|0⟩

|0⟩

α |000⟩ + β |111⟩

= | ψ̄⟩

Z1Z2 Z2Z3 “are first/last two bits equal?” 

Consider an example error

X |0⟩ = |1⟩
X |1⟩ = |0⟩

“bit-flips” / Pauli-X X1 | ψ̄⟩ = α |100⟩ + β |011⟩ =≠

Z1Z2 Z2Z3
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So what happens to the encoded state?

The Quantum Repetition Code (2/2)

8

Encoded State Parity Measurements|ψ⟩

|0⟩

|0⟩

α |000⟩ + β |111⟩

= | ψ̄⟩

Z1Z2 Z2Z3 “are first/last two bits equal?” 

Consider an example error

X |0⟩ = |1⟩
X |1⟩ = |0⟩

“bit-flips” / Pauli-X X1 | ψ̄⟩ = α |100⟩ + β |011⟩ =≠

X2 | ψ̄⟩ = α |010⟩ + β |101⟩ ≠ ≠

Z1Z2 Z2Z3

mailto:benedikt.placke@physics.ox.ac.uk


benedikt.placke@physics.ox.ac.uk

So what happens to the encoded state?

The Quantum Repetition Code (2/2)

8

Encoded State Parity Measurements|ψ⟩

|0⟩

|0⟩

α |000⟩ + β |111⟩

= | ψ̄⟩

Z1Z2 Z2Z3 “are first/last two bits equal?” 

Consider an example error

X |0⟩ = |1⟩
X |1⟩ = |0⟩

“bit-flips” / Pauli-X X1 | ψ̄⟩ = α |100⟩ + β |011⟩ =≠

X2 | ψ̄⟩ = α |010⟩ + β |101⟩ ≠ ≠

X3 | ψ̄⟩ = α |001⟩ + β |110⟩ ≠=

Z1Z2 Z2Z3
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8

Encoded State Parity Measurements|ψ⟩

|0⟩

|0⟩

α |000⟩ + β |111⟩

= | ψ̄⟩

Z1Z2 Z2Z3 “are first/last two bits equal?” 

Consider an example error

X |0⟩ = |1⟩
X |1⟩ = |0⟩

“bit-flips” / Pauli-X X1 | ψ̄⟩ = α |100⟩ + β |011⟩ =≠

X2 | ψ̄⟩ = α |010⟩ + β |101⟩ ≠ ≠

X3 | ψ̄⟩ = α |001⟩ + β |110⟩ ≠=

Z1Z2 Z2Z3

Unique outcome of parity measurements in each case : “syndrome”

We can correct (single) bit flips without learning anything about the  
stored quantum information!
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(Just?) Another Repetition Code

9

Let’s do something more quantum

|ψ⟩

|0⟩

|0⟩

α |000⟩ + β |111⟩

Bit flip code encoding
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(Just?) Another Repetition Code

9

Let’s do something more quantum

Bit Phase flip code encoding

|ψ⟩

|0⟩

|0⟩

H

H

H

H |0⟩ = 1

2
( |0⟩ + |1⟩) =: | + ⟩

H |1⟩ = 1

2
( |0⟩ − |1⟩) =: | − ⟩

“Hadamard” Gate

α |000⟩ + β |111⟩

H
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(Just?) Another Repetition Code

9

Let’s do something more quantum

Bit Phase flip code encoding

|ψ⟩

|0⟩

|0⟩

α | + + + ⟩ + β | − − − ⟩

= | ψ̄⟩ph

H

H

H

H |0⟩ = 1

2
( |0⟩ + |1⟩) =: | + ⟩

H |1⟩ = 1

2
( |0⟩ − |1⟩) =: | − ⟩

“Hadamard” Gate

α |000⟩ + β |111⟩

H
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(Just?) Another Repetition Code

9

Let’s do something more quantum

Bit Phase flip code encoding

|ψ⟩

|0⟩

|0⟩

α | + + + ⟩ + β | − − − ⟩

= | ψ̄⟩ph

H

H

H

H |0⟩ = 1

2
( |0⟩ + |1⟩) =: | + ⟩

H |1⟩ = 1

2
( |0⟩ − |1⟩) =: | − ⟩

“Hadamard” Gate

α |000⟩ + β |111⟩

Hadamard Gate implements “basis change” 
Xi ↔ Zi

This code corrects single phase-flips!

Z | + ⟩ = | − ⟩
Z | − ⟩ = | + ⟩

“phase-flips” / Pauli-Z

Checks become 
X1X2, X2X3

Z |0⟩ = |0⟩
Z |1⟩ = − |1⟩

remember:H
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The Shor Code

10

We now concatenate the bit- and phase-flip code.

|ψ⟩

|0⟩

|0⟩ H

H

H

α | + + + ⟩ + β | − − − ⟩

Outer code:  
Phase-flip code
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The Shor Code

10

We now concatenate the bit- and phase-flip code.

|0⟩

|0⟩

|0⟩
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2
( |000⟩ − |111⟩)

| +̄ ⟩ = 1

2
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Inner code:  
Bit-flip code

Parity measurements:

 ,  Z1Z2 Z2Z3  ,  Z4Z5 Z5Z6  ,  Z7Z8 Z8Z9

 X1X2X3X4X5X6  X4X5X6X7X8X9

Checks of inner code

Checks of outer codeα | + + + ⟩ + β | − − − ⟩

The Shor code can correct a single bit- and phase-flip!

Outer code:  
Phase-flip code

Inner code:  
Bit-flip code
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The Miracle: Discretisation of Errors

11

Miraculously, correcting bit- and phase-flips is enough!

The essential insight: Paulis form a basis of single-qubit operators

U = aI + bX + cZ + dXZ

any  matrix2 × 2
Identity  

(“nothing" happens)

bit-flip

phase-flip

bit- and  
phase-flip

Informally  
Anything that happens to a single qubit is a superposition of 
nothing, a bit-flip, a phase-flip, and a bit- and phase-flip together 
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The essential insight: Paulis form a basis of single-qubit operators

U = aI + bX + cZ + dXZ

any  matrix2 × 2
Identity  

(“nothing" happens)

bit-flip

phase-flip

bit- and  
phase-flip

Informally  
Anything that happens to a single qubit is a superposition of 
nothing, a bit-flip, a phase-flip, and a bit- and phase-flip together 

U |ψ⟩Shor = a |ψ⟩Shor +
b X |ψ⟩Shor +
c Z |ψ⟩Shor +
d XZ |ψ⟩Shor

All correspond to  
different set of 
measurement 

outcomes!

After application of arbitrary single-qubit operator
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The essential insight: Paulis form a basis of single-qubit operators

U = aI + bX + cZ + dXZ

any  matrix2 × 2
Identity  

(“nothing" happens)

bit-flip

phase-flip

bit- and  
phase-flip

Informally  
Anything that happens to a single qubit is a superposition of 
nothing, a bit-flip, a phase-flip, and a bit- and phase-flip together 

U |ψ⟩Shor = a |ψ⟩Shor +
b X |ψ⟩Shor +
c Z |ψ⟩Shor +
d XZ |ψ⟩Shor

All correspond to  
different set of 
measurement 

outcomes!

After application of arbitrary single-qubit operator

Measuring the code checks will collapse the 
erroneous state into a discrete set of outcomes: 

nothing, bit-flip, phase-flip, or both flips

mailto:benedikt.placke@physics.ox.ac.uk


benedikt.placke@physics.ox.ac.uk

Preliminary Summary

12

The Shor Code  
(and also the Steane Code!)  

can correct an arbitrary single-qubit error.
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Preliminary Summary

12

The Shor Code  
(and also the Steane Code!)  

can correct an arbitrary single-qubit error.

Remember that this is highly non-trivial:

Fault tolerant “random access machines” do not exists! 

 QEC is possible because quantum mechanics is not just “wave mechanics” 
It is a dance of a continuous (entangled) quantum states and discrete (projective) measurements!

⟹
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Have Mercy with our Colleagues in the Lab!

13

The Shor code is intuitive,  
but not very practical:

For example size-5 Shor code has  
checks
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Have Mercy with our Colleagues in the Lab!

13

The Shor code is intuitive,  
but not very practical:

For example size-5 Shor code has  
checks

 ,  ,  ,  Z1Z2 Z2Z3 Z3Z4 Z4Z5

 ,  ,  ,  Z21Z22 Z22Z23 Z23Z24 Z24Z25

…

 X1X2X3X4X5X6X7X8X9X10

 X6…X15

 X16…X25

…
Checks of outer 
code get harder 
and harder to 
measure
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The Shor code is intuitive,  
but not very practical:

For example size-5 Shor code has  
checks

 ,  ,  ,  Z1Z2 Z2Z3 Z3Z4 Z4Z5

 ,  ,  ,  Z21Z22 Z22Z23 Z23Z24 Z24Z25

…

 X1X2X3X4X5X6X7X8X9X10

 X6…X15

 X16…X25

…
Checks of outer 
code get harder 
and harder to 
measure

Better: Low-Density Parity Check (LDPC) codes

Most well-studied example: the surface code

1 2 3

54 6

X1X2X4X5 Z2Z3Z5Z6

Properties:


‣ At most 4-body 
measurements for any size


‣ Protects agains errors 
acting on at most  
qubits

⌊L/2⌋L

Qubits arranged on 
checkerboard
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This has been built!

14

From Krinner et. al Nature (2022) 
https://doi.org/10.1038/s41586-022-04566-8

As a sketch … … and as a photograph 

‣  surface code built by the 
Walraff Group at ETH


‣ Because it is an academic 
group, we even get a picture of 
the device!

L = 3
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This has been built!

14

From Krinner et. al Nature (2022) 
https://doi.org/10.1038/s41586-022-04566-8

As a sketch … … and as a photograph 

‣  surface code built by the 
Walraff Group at ETH


‣ Because it is an academic 
group, we even get a picture of 
the device!

L = 3

Google even built two!

 and L = 5 L = 3

‣ No picture :(


‣ Only the “best”  code is 
better than ?

L = 5
L = 3
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How many errors are too much?

15

The “threshold” of a code

For QEC to work, the constituents have to be good enough!
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How many errors are too much?

15

The “threshold” of a code

For QEC to work, the constituents have to be good enough!

Formally: error rate , where  is the threshold rateperr < pth pth

  as  for   pfail → 0 L → ∞ perr < pth

  as  for   pfail → 1
2 L → ∞ perr > pth

L
→

∞

perr < pth

…

…
p fa

il
→

0
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The “threshold” of a code

For QEC to work, the constituents have to be good enough!

Formally: error rate , where  is the threshold rateperr < pth pth

  as  for   pfail → 0 L → ∞ perr < pth

  as  for   pfail → 1
2 L → ∞ perr > pth

Modelling the threshold

‣ Error correction is a complicated statistical process

‣ Remarkably, with certain assumptions on the noise,  
it maps exactly on a well-known model of condensed 
matter physics: the random-bond Ising model 1,2

1Dennis et al. (2001), 2Wang et al (2002) 3Chubb, Flammia (2019)

L
→

∞

perr < pth

…

…
p fa

il
→

0
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The “threshold” of a code

For QEC to work, the constituents have to be good enough!

Formally: error rate , where  is the threshold rateperr < pth pth

  as  for   pfail → 0 L → ∞ perr < pth

  as  for   pfail → 1
2 L → ∞ perr > pth

Modelling the threshold

‣ Error correction is a complicated statistical process

‣ Remarkably, with certain assumptions on the noise,  
it maps exactly on a well-known model of condensed 
matter physics: the random-bond Ising model 1,2

Phase diagram of 
the the RBIM3

Te
m

pe
ra

tu
re

Disorder 
strength

Threshold of the 
surface code:  

 
pth = p(RBIM)

c ≈ 11 %

Errors being correctible  
  

spin model is in 
ferromagnetic phase 

⇔

1Dennis et al. (2001), 2Wang et al (2002) 3Chubb, Flammia (2019)

L
→

∞

perr < pth

…

…
p fa

il
→

0
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Active research: “better” codes: 

16

Hyperbolic surface codes

Defined on regular tilings of the hyperbolic plane

Qubits on edges

M. C. Escher: Circle Limit III
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Active research: “better” codes: 

16

Hyperbolic surface codes

Defined on regular tilings of the hyperbolic plane

Z
X

As = ∏
j∈s

Zj

Bp = ∏
i∈p

Xi

As

Bp

‣ Harder to built, since not naturally embedded 
into planar geometry

‣ But: if built has much reduced overhead (per 
qubit) compared to other codes 
       (#logical qubits)  (#physical qubits)∝

Qubits on edges

M. C. Escher: Circle Limit III
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An artificial hyperbolic lattice 
[Kollar et al. Nature (2019)]

Such geometries can be built in principle!Hyperbolic surface codes
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An artificial hyperbolic lattice 
[Kollar et al. Nature (2019)]

Such geometries can be built in principle!Hyperbolic surface codes

Defined on regular tilings of the hyperbolic plane

Z
X

As = ∏
j∈s

Zj

Bp = ∏
i∈p

Xi

As

Bp

‣ Harder to built, since not naturally embedded 
into planar geometry

‣ But: if built has much reduced overhead (per 
qubit) compared to other codes 
       (#logical qubits)  (#physical qubits)∝

Recent result: modelling the threshold of 
hyperbolic codes
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‣ {5, 5} code, 
information-
theoretic optimum 
performance

‣ Modelling also 
yielded new insights 
into statistical 
mechanics in 
curved geometries

Roy, Placke, Breuckmann (2020); Placke, Breuckmann (2022)

Qubits on edges

M. C. Escher: Circle Limit III

mailto:benedikt.placke@physics.ox.ac.uk


benedikt.placke@physics.ox.ac.uk

Summary & Conclusion

17

‣ This is in contrast to other proposed alternative models of computation, like 
random access machines


‣ Constituents must have minimal fidelity for QEC to work (threshold theorem)

Quantum Error Correction is (surprisingly!) possible

Experiments are “scratching 
the threshold”

From Krinner et. al Nature (2022) 
https://doi.org/10.1038/s41586-022-04566-8
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Current research: finding better codes and  
modelling their error correction
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Thank you! 
Questions?
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